Born-Again Tree Ensembles

Abstract

The use of machine learning algorithms in finance, medicine, and criminal justice can deeply impact human lives. As a consequence, research into interpretable machine learning has rapidly grown in an attempt to better control and fix possible sources of mistakes and biases. Tree ensembles, in particular, offer a good prediction quality in various domains, but the concurrent use of multiple trees reduces the interpretability of the ensemble. Against this background, we study born-again tree ensembles, i.e., the process of constructing a single decision tree of minimum size that reproduces the exact same behavior as a given tree ensemble in its entire feature space. To find such a tree, we develop a dynamic-programming based algorithm that exploits sophisticated pruning and bounding rules to reduce the number of recursive calls. This algorithm generates optimal born-again trees for many datasets of practical interest, leading to classifiers which are typically simpler and more interpretable without any other form of compromise.

Cite

Text

Vidal and Schiffer. "Born-Again Tree Ensembles." International Conference on Machine Learning, 2020.

Markdown

[Vidal and Schiffer. "Born-Again Tree Ensembles." International Conference on Machine Learning, 2020.](https://mlanthology.org/icml/2020/vidal2020icml-bornagain/)

BibTeX

@inproceedings{vidal2020icml-bornagain,
  title     = {{Born-Again Tree Ensembles}},
  author    = {Vidal, Thibaut and Schiffer, Maximilian},
  booktitle = {International Conference on Machine Learning},
  year      = {2020},
  pages     = {9743-9753},
  volume    = {119},
  url       = {https://mlanthology.org/icml/2020/vidal2020icml-bornagain/}
}