Born-Again Tree Ensembles
Abstract
The use of machine learning algorithms in finance, medicine, and criminal justice can deeply impact human lives. As a consequence, research into interpretable machine learning has rapidly grown in an attempt to better control and fix possible sources of mistakes and biases. Tree ensembles, in particular, offer a good prediction quality in various domains, but the concurrent use of multiple trees reduces the interpretability of the ensemble. Against this background, we study born-again tree ensembles, i.e., the process of constructing a single decision tree of minimum size that reproduces the exact same behavior as a given tree ensemble in its entire feature space. To find such a tree, we develop a dynamic-programming based algorithm that exploits sophisticated pruning and bounding rules to reduce the number of recursive calls. This algorithm generates optimal born-again trees for many datasets of practical interest, leading to classifiers which are typically simpler and more interpretable without any other form of compromise.
Cite
Text
Vidal and Schiffer. "Born-Again Tree Ensembles." International Conference on Machine Learning, 2020.Markdown
[Vidal and Schiffer. "Born-Again Tree Ensembles." International Conference on Machine Learning, 2020.](https://mlanthology.org/icml/2020/vidal2020icml-bornagain/)BibTeX
@inproceedings{vidal2020icml-bornagain,
title = {{Born-Again Tree Ensembles}},
author = {Vidal, Thibaut and Schiffer, Maximilian},
booktitle = {International Conference on Machine Learning},
year = {2020},
pages = {9743-9753},
volume = {119},
url = {https://mlanthology.org/icml/2020/vidal2020icml-bornagain/}
}