Directional Graph Networks

Abstract

The lack of anisotropic kernels in graph neural networks (GNNs) strongly limits their expressiveness, contributing to well-known issues such as over-smoothing. To overcome this limitation, we propose the first globally consistent anisotropic kernels for GNNs, allowing for graph convolutions that are defined according to topologicaly-derived directional flows. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then, we propose the use of the Laplacian eigenvectors as such vector field. We show that the method generalizes CNNs on an $n$-dimensional grid and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. We evaluate our method on different standard benchmarks and see a relative error reduction of 8% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset, and a relative increase in precision of 1.6% on the MolPCBA dataset. An important outcome of this work is that it enables graph networks to embed directions in an unsupervised way, thus allowing a better representation of the anisotropic features in different physical or biological problems.

Cite

Text

Beaini et al. "Directional Graph Networks." International Conference on Machine Learning, 2021.

Markdown

[Beaini et al. "Directional Graph Networks." International Conference on Machine Learning, 2021.](https://mlanthology.org/icml/2021/beaini2021icml-directional/)

BibTeX

@inproceedings{beaini2021icml-directional,
  title     = {{Directional Graph Networks}},
  author    = {Beaini, Dominique and Passaro, Saro and Létourneau, Vincent and Hamilton, Will and Corso, Gabriele and Lió, Pietro},
  booktitle = {International Conference on Machine Learning},
  year      = {2021},
  pages     = {748-758},
  volume    = {139},
  url       = {https://mlanthology.org/icml/2021/beaini2021icml-directional/}
}