Bilevel Optimization: Convergence Analysis and Enhanced Design

Abstract

Bilevel optimization has arisen as a powerful tool for many machine learning problems such as meta-learning, hyperparameter optimization, and reinforcement learning. In this paper, we investigate the nonconvex-strongly-convex bilevel optimization problem. For deterministic bilevel optimization, we provide a comprehensive convergence rate analysis for two popular algorithms respectively based on approximate implicit differentiation (AID) and iterative differentiation (ITD). For the AID-based method, we orderwisely improve the previous convergence rate analysis due to a more practical parameter selection as well as a warm start strategy, and for the ITD-based method we establish the first theoretical convergence rate. Our analysis also provides a quantitative comparison between ITD and AID based approaches. For stochastic bilevel optimization, we propose a novel algorithm named stocBiO, which features a sample-efficient hypergradient estimator using efficient Jacobian- and Hessian-vector product computations. We provide the convergence rate guarantee for stocBiO, and show that stocBiO outperforms the best known computational complexities orderwisely with respect to the condition number $\kappa$ and the target accuracy $\epsilon$. We further validate our theoretical results and demonstrate the efficiency of bilevel optimization algorithms by the experiments on meta-learning and hyperparameter optimization.

Cite

Text

Ji et al. "Bilevel Optimization: Convergence Analysis and Enhanced Design." International Conference on Machine Learning, 2021.

Markdown

[Ji et al. "Bilevel Optimization: Convergence Analysis and Enhanced Design." International Conference on Machine Learning, 2021.](https://mlanthology.org/icml/2021/ji2021icml-bilevel/)

BibTeX

@inproceedings{ji2021icml-bilevel,
  title     = {{Bilevel Optimization: Convergence Analysis and Enhanced Design}},
  author    = {Ji, Kaiyi and Yang, Junjie and Liang, Yingbin},
  booktitle = {International Conference on Machine Learning},
  year      = {2021},
  pages     = {4882-4892},
  volume    = {139},
  url       = {https://mlanthology.org/icml/2021/ji2021icml-bilevel/}
}