BANG: Bridging Autoregressive and Non-Autoregressive Generation with Large Scale Pretraining

Abstract

In this paper, we propose BANG, a new pretraining model to Bridge the gap between Autoregressive (AR) and Non-autoregressive (NAR) Generation. AR and NAR generation can be uniformly regarded as to what extent previous tokens can be attended, and BANG bridges AR and NAR generation through designing a novel model structure for large-scale pre-training. A pretrained BANG model can simultaneously support AR, NAR, and semi-NAR generation to meet different requirements. Experiments on question generation (SQuAD 1.1), summarization (XSum), and dialogue generation (PersonaChat) show that BANG improves NAR and semi-NAR performance significantly as well as attaining comparable performance with strong AR pretrained models. Compared with the semi-NAR strong baselines, BANG achieves absolute improvements of 14.01 and 5.24 in the overall scores of SQuAD 1.1 and XSum, respectively. In addition, BANG achieves absolute improvements of 10.73, 6.39, and 5.90 in the overall scores of SQuAD, XSUM, and PersonaChat compared with the NAR strong baselines, respectively. Our code will be made publicly available.

Cite

Text

Qi et al. "BANG: Bridging Autoregressive and Non-Autoregressive Generation with Large Scale Pretraining." International Conference on Machine Learning, 2021.

Markdown

[Qi et al. "BANG: Bridging Autoregressive and Non-Autoregressive Generation with Large Scale Pretraining." International Conference on Machine Learning, 2021.](https://mlanthology.org/icml/2021/qi2021icml-bang/)

BibTeX

@inproceedings{qi2021icml-bang,
  title     = {{BANG: Bridging Autoregressive and Non-Autoregressive Generation with Large Scale Pretraining}},
  author    = {Qi, Weizhen and Gong, Yeyun and Jiao, Jian and Yan, Yu and Chen, Weizhu and Liu, Dayiheng and Tang, Kewen and Li, Houqiang and Chen, Jiusheng and Zhang, Ruofei and Zhou, Ming and Duan, Nan},
  booktitle = {International Conference on Machine Learning},
  year      = {2021},
  pages     = {8630-8639},
  volume    = {139},
  url       = {https://mlanthology.org/icml/2021/qi2021icml-bang/}
}