Constrained Discrete Black-Box Optimization Using Mixed-Integer Programming
Abstract
Discrete black-box optimization problems are challenging for model-based optimization (MBO) algorithms, such as Bayesian optimization, due to the size of the search space and the need to satisfy combinatorial constraints. In particular, these methods require repeatedly solving a complex discrete global optimization problem in the inner loop, where popular heuristic inner-loop solvers introduce approximations and are difficult to adapt to combinatorial constraints. In response, we propose NN+MILP, a general discrete MBO framework using piecewise-linear neural networks as surrogate models and mixed-integer linear programming (MILP) to optimize the acquisition function. MILP provides optimality guarantees and a versatile declarative language for domain-specific constraints. We test our approach on a range of unconstrained and constrained problems, including DNA binding, constrained binary quadratic problems from the MINLPLib benchmark, and the NAS-Bench-101 neural architecture search benchmark. NN+MILP surpasses or matches the performance of black-box algorithms tailored to the constraints at hand, with global optimization of the acquisition problem running in a few minutes using only standard software packages and hardware.
Cite
Text
Papalexopoulos et al. "Constrained Discrete Black-Box Optimization Using Mixed-Integer Programming." International Conference on Machine Learning, 2022.Markdown
[Papalexopoulos et al. "Constrained Discrete Black-Box Optimization Using Mixed-Integer Programming." International Conference on Machine Learning, 2022.](https://mlanthology.org/icml/2022/papalexopoulos2022icml-constrained/)BibTeX
@inproceedings{papalexopoulos2022icml-constrained,
title = {{Constrained Discrete Black-Box Optimization Using Mixed-Integer Programming}},
author = {Papalexopoulos, Theodore P and Tjandraatmadja, Christian and Anderson, Ross and Vielma, Juan Pablo and Belanger, David},
booktitle = {International Conference on Machine Learning},
year = {2022},
pages = {17295-17322},
volume = {162},
url = {https://mlanthology.org/icml/2022/papalexopoulos2022icml-constrained/}
}