Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains

Abstract

We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration in the form of Markov chain Monte Carlo (MCMC) procedures. Given any Markov chain corresponding to a target probability distribution, we design a self-repellent random walk (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes. For a class of SRRWs parameterized by a positive real $\alpha$, we prove that the empirical distribution of the process converges almost surely to the the target (stationary) distribution of the underlying Markov chain kernel. We then provide a central limit theorem and derive the exact form of the arising asymptotic co-variance matrix, which allows us to show that the SRRW with a stronger repellence (larger $\alpha$) always achieves a smaller asymptotic covariance, in the sense of Loewner ordering of co-variance matrices. Especially for SRRW-driven MCMC algorithms, we show that the decrease in the asymptotic sampling variance is of the order $O(1/\alpha)$, eventually going down to zero. Finally, we provide numerical simulations complimentary to our theoretical results, also empirically testing a version of SRRW with $\alpha$ increasing in time to combine the benefits of smaller asymptotic variance due to large $\alpha$, with empirically observed faster mixing properties of SRRW with smaller $\alpha$.

Cite

Text

Doshi et al. "Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains." International Conference on Machine Learning, 2023.

Markdown

[Doshi et al. "Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains." International Conference on Machine Learning, 2023.](https://mlanthology.org/icml/2023/doshi2023icml-selfrepellent/)

BibTeX

@inproceedings{doshi2023icml-selfrepellent,
  title     = {{Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains}},
  author    = {Doshi, Vishwaraj and Hu, Jie and Eun, Do Young},
  booktitle = {International Conference on Machine Learning},
  year      = {2023},
  pages     = {8403-8423},
  volume    = {202},
  url       = {https://mlanthology.org/icml/2023/doshi2023icml-selfrepellent/}
}