E$(n)$ Equivariant Message Passing Simplicial Networks

Abstract

This paper presents $\mathrm{E}(n)$ Equivariant Message Passing Simplicial Networks (EMPSNs), a novel approach to learning on geometric graphs and point clouds that is equivariant to rotations, translations, and reflections. EMPSNs can learn high-dimensional simplex features in graphs (e.g. triangles), and use the increase of geometric information of higher-dimensional simplices in an $\mathrm{E}(n)$ equivariant fashion. EMPSNs simultaneously generalize $\mathrm{E}(n)$ Equivariant Graph Neural Networks to a topologically more elaborate counterpart and provide an approach for including geometric information in Message Passing Simplicial Networks, thereby serving as a proof of concept for combining geometric and topological information in graph learning. The results indicate that EMPSNs can leverage the benefits of both approaches, leading to a general increase in performance when compared to either method individually, being on par with state-of-the-art approaches for learning on geometric graphs. Moreover, the results suggest that incorporating geometric information serves as an effective measure against over-smoothing in message passing networks, especially when operating on high-dimensional simplicial structures.

Cite

Text

Eijkelboom et al. "E$(n)$ Equivariant Message Passing Simplicial Networks." International Conference on Machine Learning, 2023.

Markdown

[Eijkelboom et al. "E$(n)$ Equivariant Message Passing Simplicial Networks." International Conference on Machine Learning, 2023.](https://mlanthology.org/icml/2023/eijkelboom2023icml-equivariant/)

BibTeX

@inproceedings{eijkelboom2023icml-equivariant,
  title     = {{E$(n)$ Equivariant Message Passing Simplicial Networks}},
  author    = {Eijkelboom, Floor and Hesselink, Rob and Bekkers, Erik J},
  booktitle = {International Conference on Machine Learning},
  year      = {2023},
  pages     = {9071-9081},
  volume    = {202},
  url       = {https://mlanthology.org/icml/2023/eijkelboom2023icml-equivariant/}
}