Memory-Based Meta-Learning on Non-Stationary Distributions

Abstract

Memory-based meta-learning is a technique for approximating Bayes-optimal predictors. Under fairly general conditions, minimizing sequential prediction error, measured by the log loss, leads to implicit meta-learning. The goal of this work is to investigate how far this interpretation can be realized by current sequence prediction models and training regimes. The focus is on piecewise stationary sources with unobserved switching-points, which arguably capture an important characteristic of natural language and action-observation sequences in partially observable environments. We show that various types of memory-based neural models, including Transformers, LSTMs, and RNNs can learn to accurately approximate known Bayes-optimal algorithms and behave as if performing Bayesian inference over the latent switching-points and the latent parameters governing the data distribution within each segment.

Cite

Text

Genewein et al. "Memory-Based Meta-Learning on Non-Stationary Distributions." International Conference on Machine Learning, 2023.

Markdown

[Genewein et al. "Memory-Based Meta-Learning on Non-Stationary Distributions." International Conference on Machine Learning, 2023.](https://mlanthology.org/icml/2023/genewein2023icml-memorybased/)

BibTeX

@inproceedings{genewein2023icml-memorybased,
  title     = {{Memory-Based Meta-Learning on Non-Stationary Distributions}},
  author    = {Genewein, Tim and Deletang, Gregoire and Ruoss, Anian and Wenliang, Li Kevin and Catt, Elliot and Dutordoir, Vincent and Grau-Moya, Jordi and Orseau, Laurent and Hutter, Marcus and Veness, Joel},
  booktitle = {International Conference on Machine Learning},
  year      = {2023},
  pages     = {11173-11195},
  volume    = {202},
  url       = {https://mlanthology.org/icml/2023/genewein2023icml-memorybased/}
}