On the Optimality of Misspecified Kernel Ridge Regression
Abstract
In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\rho}^{\star} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\left\Vert f_{\rho}^{\star} \right \Vert_{L^{\infty}} < \infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0} \in (0,1) $ is the embedding index, a constant depending on $\mathcal{H}$. Whether the KRR is optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\in (0,1)$ when the $\mathcal{H}$ is a Sobolev RKHS.
Cite
Text
Zhang et al. "On the Optimality of Misspecified Kernel Ridge Regression." International Conference on Machine Learning, 2023.Markdown
[Zhang et al. "On the Optimality of Misspecified Kernel Ridge Regression." International Conference on Machine Learning, 2023.](https://mlanthology.org/icml/2023/zhang2023icml-optimality/)BibTeX
@inproceedings{zhang2023icml-optimality,
title = {{On the Optimality of Misspecified Kernel Ridge Regression}},
author = {Zhang, Haobo and Li, Yicheng and Lu, Weihao and Lin, Qian},
booktitle = {International Conference on Machine Learning},
year = {2023},
pages = {41331-41353},
volume = {202},
url = {https://mlanthology.org/icml/2023/zhang2023icml-optimality/}
}