A Dynamic Algorithm for Weighted Submodular Cover Problem
Abstract
We initiate the study of the submodular cover problem in a dynamic setting where the elements of the ground set are inserted and deleted. In the classical submodular cover problem, we are given a monotone submodular function $f : 2^{V} \to \mathbb{R}^{\ge 0}$ and the goal is to obtain a set $S \subseteq V$ that minimizes the cost subject to the constraint $f(S) = f(V)$. This is a classical problem in computer science and generalizes the Set Cover problem, 2-Set Cover, and dominating set problem among others. We consider this problem in a dynamic setting where there are updates to our set $V$, in the form of insertions and deletions of elements from a ground set $\mathcal{V}$, and the goal is to maintain an approximately optimal solution with low query complexity per update. For this problem, we propose a randomized algorithm that, in expectation, obtains a $(1-O(\epsilon), O(\epsilon^{-1}))$-bicriteria approximation using polylogarithmic query complexity per update.
Cite
Text
Banihashem et al. "A Dynamic Algorithm for Weighted Submodular Cover Problem." International Conference on Machine Learning, 2024.Markdown
[Banihashem et al. "A Dynamic Algorithm for Weighted Submodular Cover Problem." International Conference on Machine Learning, 2024.](https://mlanthology.org/icml/2024/banihashem2024icml-dynamic-a/)BibTeX
@inproceedings{banihashem2024icml-dynamic-a,
title = {{A Dynamic Algorithm for Weighted Submodular Cover Problem}},
author = {Banihashem, Kiarash and Goudarzi, Samira and Hajiaghayi, Mohammadtaghi and Jabbarzade, Peyman and Monemizadeh, Morteza},
booktitle = {International Conference on Machine Learning},
year = {2024},
pages = {2808-2830},
volume = {235},
url = {https://mlanthology.org/icml/2024/banihashem2024icml-dynamic-a/}
}