Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm
Abstract
This paper presents a new generalization error analysis for Decentralized Stochastic Gradient Descent (D-SGD) based on algorithmic stability. The obtained results overhaul a series of recent works that suggested an increased instability due to decentralization and a detrimental impact of poorly-connected communication graphs on generalization. On the contrary, we show, for convex, strongly convex and non-convex functions, that D-SGD can always recover generalization bounds analogous to those of classical SGD, suggesting that the choice of graph does not matter. We then argue that this result is coming from a worst-case analysis, and we provide a refined optimization-dependent generalization bound for general convex functions. This new bound reveals that the choice of graph can in fact improve the worst-case bound in certain regimes, and that surprisingly, a poorly-connected graph can even be beneficial for generalization.
Cite
Text
Le Bars et al. "Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm." International Conference on Machine Learning, 2024.Markdown
[Le Bars et al. "Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm." International Conference on Machine Learning, 2024.](https://mlanthology.org/icml/2024/lebars2024icml-improved/)BibTeX
@inproceedings{lebars2024icml-improved,
title = {{Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm}},
author = {Le Bars, Batiste and Bellet, Aurélien and Tommasi, Marc and Scaman, Kevin and Neglia, Giovanni},
booktitle = {International Conference on Machine Learning},
year = {2024},
pages = {26215-26240},
volume = {235},
url = {https://mlanthology.org/icml/2024/lebars2024icml-improved/}
}