Interpreting Deep Embeddings for Disease Progression Clustering

Abstract

We propose a novel approach for interpreting deep embeddings in the context of patient clustering. We evaluate our approach on a dataset of participants with type 2 diabetes from the UK Biobank, and demonstrate clinically meaningful insights into disease progression patterns.

Cite

Text

Munoz-Farre et al. "Interpreting Deep Embeddings for Disease Progression Clustering." ICML 2023 Workshops: IMLH, 2023.

Markdown

[Munoz-Farre et al. "Interpreting Deep Embeddings for Disease Progression Clustering." ICML 2023 Workshops: IMLH, 2023.](https://mlanthology.org/icmlw/2023/munozfarre2023icmlw-interpreting/)

BibTeX

@inproceedings{munozfarre2023icmlw-interpreting,
  title     = {{Interpreting Deep Embeddings for Disease Progression Clustering}},
  author    = {Munoz-Farre, Anna and Poulakakis-Daktylidis, Antonios and Kothalawala, Dilini Mahesha and Rodriguez-Martinez, Andrea},
  booktitle = {ICML 2023 Workshops: IMLH},
  year      = {2023},
  url       = {https://mlanthology.org/icmlw/2023/munozfarre2023icmlw-interpreting/}
}