MosaicBERT: How to Train BERT with a Lunch Money Budget
Abstract
Although BERT-style encoder models are heavily used in NLP research, many researchers do not pretrain their own BERTs from scratch due to the high cost of training. In the past half-decade since BERT first rose to prominence, many advances have been made with other transformer architectures and training configurations that have yet to be systematically incorporated into BERT. Here, we introduce MosaicBERT, a BERT-style encoder architecture and training recipe that is empirically optimized for fast pretraining. This efficient architecture incorporates FlashAttention, Attention with Linear Biases (ALiBi), Gated Linear Units (GLU), a module to dynamically remove padded tokens, and low precision LayerNorm into the classic transformer encoder block. The training recipe includes a 30\% masking ratio for the Masked Language Modeling (MLM) objective, bfloat16 precision, and vocabulary size optimized for GPU throughput, in addition to best-practices from RoBERTa and other encoder models. When pretrained from scratch on the C4 dataset, this base model achieves the downstream average GLUE (dev) score of 79.6 in 1.13 hours on 8 A100 80 GB GPUs at a cost of roughly $20. We plot extensive accuracy vs. pretraining speed Pareto curves and show that MosaicBERT base and large are consistently Pareto optimal when compared to a competitive BERT base and large. This empirical speed up in pretraining enables researchers and engineers to pretrain custom BERT-style models at low cost instead of finetune on existing generic models. We open source our model weights, benchmarking data, and code.
Cite
Text
Portes et al. "MosaicBERT: How to Train BERT with a Lunch Money Budget." ICML 2023 Workshops: ES-FoMO, 2023.Markdown
[Portes et al. "MosaicBERT: How to Train BERT with a Lunch Money Budget." ICML 2023 Workshops: ES-FoMO, 2023.](https://mlanthology.org/icmlw/2023/portes2023icmlw-mosaicbert/)BibTeX
@inproceedings{portes2023icmlw-mosaicbert,
title = {{MosaicBERT: How to Train BERT with a Lunch Money Budget}},
author = {Portes, Jacob and Trott, Alexander R and Havens, Sam and King, Daniel and Venigalla, Abhinav and Nadeem, Moin and Sardana, Nikhil and Khudia, Daya and Frankle, Jonathan},
booktitle = {ICML 2023 Workshops: ES-FoMO},
year = {2023},
url = {https://mlanthology.org/icmlw/2023/portes2023icmlw-mosaicbert/}
}