Impression Allocation for Combating Fraud in E-Commerce via Deep Reinforcement Learning with Action Norm Penalty

Abstract

Conducting fraud transactions has become popular among e-commerce sellers to make their products favorable to the platform and buyers, which decreases the utilization efficiency of buyer impressions and jeopardizes the business environment. Fraud detection techniques are necessary but not enough for the platform since it is impossible to recognize all the fraud transactions. In this paper, we focus on improving the platform's impression allocation mechanism to maximize its profit and reduce the sellers' fraudulent behaviors simultaneously. First, we learn a seller behavior model to predict the sellers' fraudulent behaviors from the real-world data provided by one of the largest e-commerce company in the world. Then, we formulate the platform's impression allocation problem as a continuous Markov Decision Process (MDP) with unbounded action space. In order to make the action executable in practice and facilitate learning, we propose a novel deep reinforcement learning algorithm DDPG-ANP that introduces an action norm penalty to the reward function. Experimental results show that our algorithm significantly outperforms existing baselines in terms of scalability and solution quality.

Cite

Text

Zhao et al. "Impression Allocation for Combating Fraud in E-Commerce via Deep Reinforcement Learning with Action Norm Penalty." International Joint Conference on Artificial Intelligence, 2018. doi:10.24963/IJCAI.2018/548

Markdown

[Zhao et al. "Impression Allocation for Combating Fraud in E-Commerce via Deep Reinforcement Learning with Action Norm Penalty." International Joint Conference on Artificial Intelligence, 2018.](https://mlanthology.org/ijcai/2018/zhao2018ijcai-impression/) doi:10.24963/IJCAI.2018/548

BibTeX

@inproceedings{zhao2018ijcai-impression,
  title     = {{Impression Allocation for Combating Fraud in E-Commerce via Deep Reinforcement Learning with Action Norm Penalty}},
  author    = {Zhao, Mengchen and Li, Zhao and An, Bo and Lu, Haifeng and Yang, Yifan and Chu, Chen},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2018},
  pages     = {3940-3946},
  doi       = {10.24963/IJCAI.2018/548},
  url       = {https://mlanthology.org/ijcai/2018/zhao2018ijcai-impression/}
}