Collaborative Self-Attention Network for Session-Based Recommendation

Abstract

Session-based recommendation becomes a research hotspot for its ability to make recommendations for anonymous users. However, existing session-based methods have the following limitations: (1) They either lack the capability to learn complex dependencies or focus mostly on the current session without explicitly considering collaborative information. (2) They assume that the representation of an item is static and fixed for all users at each time step. We argue that even the same item can be represented differently for different users at the same time step. To this end, we propose a novel solution, Collaborative Self-Attention Network (CoSAN) for session-based recommendation, to learn the session representation and predict the intent of the current session by investigating neighborhood sessions. Specially, we first devise a collaborative item representation by aggregating the embedding of neighborhood sessions retrieved according to each item in the current session. Then, we apply self-attention to learn long-range dependencies between collaborative items and generate collaborative session representation. Finally, each session is represented by concatenating the collaborative session representation and the embedding of the current session. Extensive experiments on two real-world datasets show that CoSAN constantly outperforms state-of-the-art methods.

Cite

Text

Luo et al. "Collaborative Self-Attention Network for Session-Based Recommendation." International Joint Conference on Artificial Intelligence, 2020. doi:10.24963/IJCAI.2020/359

Markdown

[Luo et al. "Collaborative Self-Attention Network for Session-Based Recommendation." International Joint Conference on Artificial Intelligence, 2020.](https://mlanthology.org/ijcai/2020/luo2020ijcai-collaborative/) doi:10.24963/IJCAI.2020/359

BibTeX

@inproceedings{luo2020ijcai-collaborative,
  title     = {{Collaborative Self-Attention Network for Session-Based Recommendation}},
  author    = {Luo, Anjing and Zhao, Pengpeng and Liu, Yanchi and Zhuang, Fuzhen and Wang, Deqing and Xu, Jiajie and Fang, Junhua and Sheng, Victor S.},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {2591-2597},
  doi       = {10.24963/IJCAI.2020/359},
  url       = {https://mlanthology.org/ijcai/2020/luo2020ijcai-collaborative/}
}