Greedy Convex Ensemble
Abstract
We consider learning a convex combination of basis models, and present some new theoretical and empirical results that demonstrate the effectiveness of a greedy approach. Theoretically, we first consider whether we can use linear, instead of convex, combinations, and obtain generalization results similar to existing ones for learning from a convex hull. We obtain a negative result that even the linear hull of very simple basis functions can have unbounded capacity, and is thus prone to overfitting; on the other hand, convex hulls are still rich but have bounded capacities. Secondly, we obtain a generalization bound for a general class of Lipschitz loss functions. Empirically, we first discuss how a convex combination can be greedily learned with early stopping, and how a convex combination can be non-greedily learned when the number of basis models is known a priori. Our experiments suggest that the greedy scheme is competitive with or better than several baselines, including boosting and random forests. The greedy algorithm requires little effort in hyper-parameter tuning, and also seems able to adapt to the underlying complexity of the problem. Our code is available at https://github.com/tan1889/gce.
Cite
Text
Nguyen et al. "Greedy Convex Ensemble." International Joint Conference on Artificial Intelligence, 2020. doi:10.24963/IJCAI.2020/429Markdown
[Nguyen et al. "Greedy Convex Ensemble." International Joint Conference on Artificial Intelligence, 2020.](https://mlanthology.org/ijcai/2020/nguyen2020ijcai-greedy/) doi:10.24963/IJCAI.2020/429BibTeX
@inproceedings{nguyen2020ijcai-greedy,
title = {{Greedy Convex Ensemble}},
author = {Nguyen, Thanh Tan and Ye, Nan and Bartlett, Peter L.},
booktitle = {International Joint Conference on Artificial Intelligence},
year = {2020},
pages = {3101-3107},
doi = {10.24963/IJCAI.2020/429},
url = {https://mlanthology.org/ijcai/2020/nguyen2020ijcai-greedy/}
}