Convolutional Neural Networks with Compression Complexity Pooling for Out-of-Distribution Image Detection

Abstract

To reliably detect out-of-distribution images based on already deployed convolutional neural networks, several recent studies on the out-of-distribution detection have tried to define effective confidence scores without retraining the model. Although they have shown promising results, most of them need to find the optimal hyperparameter values by using a few out-of-distribution images, which eventually assumes a specific test distribution and makes it less practical for real-world applications. In this work, we propose a novel out-of-distribution detection method termed as MALCOM, which neither uses any out-of-distribution sample nor retrains the model. Inspired by an observation that the global average pooling cannot capture spatial information of feature maps in convolutional neural networks, our method aims to extract informative sequential patterns from the feature maps. To this end, we introduce a similarity metric that focuses on shared patterns between two sequences based on the normalized compression distance. In short, MALCOM uses both the global average and the spatial patterns of feature maps to identify out-of-distribution images accurately.

Cite

Text

Yu et al. "Convolutional Neural Networks with Compression Complexity Pooling for Out-of-Distribution Image Detection." International Joint Conference on Artificial Intelligence, 2020. doi:10.24963/IJCAI.2020/337

Markdown

[Yu et al. "Convolutional Neural Networks with Compression Complexity Pooling for Out-of-Distribution Image Detection." International Joint Conference on Artificial Intelligence, 2020.](https://mlanthology.org/ijcai/2020/yu2020ijcai-convolutional/) doi:10.24963/IJCAI.2020/337

BibTeX

@inproceedings{yu2020ijcai-convolutional,
  title     = {{Convolutional Neural Networks with Compression Complexity Pooling for Out-of-Distribution Image Detection}},
  author    = {Yu, Sehun and Lee, Dongha and Yu, Hwanjo},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {2435-2441},
  doi       = {10.24963/IJCAI.2020/337},
  url       = {https://mlanthology.org/ijcai/2020/yu2020ijcai-convolutional/}
}