Clarinet: A One-Step Approach Towards Budget-Friendly Unsupervised Domain Adaptation

Abstract

In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a source domain given limited budget. To mitigate this problem, we consider a novel problem setting where the classifier for the target domain has to be trained with complementary-label data from the source domain and unlabeled data from the target domain named budget-friendly UDA (BFUDA). The key benefit is that it is much less costly to collect complementary-label source data (required by BFUDA) than collecting the true-label source data (required by ordinary UDA). To this end, complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of the source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines.

Cite

Text

Zhang et al. "Clarinet: A One-Step Approach Towards Budget-Friendly Unsupervised Domain Adaptation." International Joint Conference on Artificial Intelligence, 2020. doi:10.24963/IJCAI.2020/350

Markdown

[Zhang et al. "Clarinet: A One-Step Approach Towards Budget-Friendly Unsupervised Domain Adaptation." International Joint Conference on Artificial Intelligence, 2020.](https://mlanthology.org/ijcai/2020/zhang2020ijcai-clarinet/) doi:10.24963/IJCAI.2020/350

BibTeX

@inproceedings{zhang2020ijcai-clarinet,
  title     = {{Clarinet: A One-Step Approach Towards Budget-Friendly Unsupervised Domain Adaptation}},
  author    = {Zhang, Yiyang and Liu, Feng and Fang, Zhen and Yuan, Bo and Zhang, Guangquan and Lu, Jie},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {2526-2532},
  doi       = {10.24963/IJCAI.2020/350},
  url       = {https://mlanthology.org/ijcai/2020/zhang2020ijcai-clarinet/}
}