Modeling Dense Cross-Modal Interactions for Joint Entity-Relation Extraction

Abstract

Joint extraction of entities and their relations benefits from the close interaction between named entities and their relation information. Therefore, how to effectively model such cross-modal interactions is critical for the final performance. Previous works have used simple methods such as label-feature concatenation to perform coarse-grained semantic fusion among cross-modal instances, but fail to capture fine-grained correlations over token and label spaces, resulting in insufficient interactions. In this paper, we propose a deep Cross-Modal Attention Network (CMAN) for joint entity and relation extraction. The network is carefully constructed by stacking multiple attention units in depth to fully model dense interactions over token-label spaces, in which two basic attention units are proposed to explicitly capture fine-grained correlations across different modalities (e.g., token-to-token and labelto-token). Experiment results on CoNLL04 dataset show that our model obtains state-of-the-art results by achieving 90.62% F1 on entity recognition and 72.97% F1 on relation classification. In ADE dataset, our model surpasses existing approaches by more than 1.9% F1 on relation classification. Extensive analyses further confirm the effectiveness of our approach.

Cite

Text

Zhao et al. "Modeling Dense Cross-Modal Interactions for Joint Entity-Relation Extraction." International Joint Conference on Artificial Intelligence, 2020. doi:10.24963/IJCAI.2020/558

Markdown

[Zhao et al. "Modeling Dense Cross-Modal Interactions for Joint Entity-Relation Extraction." International Joint Conference on Artificial Intelligence, 2020.](https://mlanthology.org/ijcai/2020/zhao2020ijcai-modeling/) doi:10.24963/IJCAI.2020/558

BibTeX

@inproceedings{zhao2020ijcai-modeling,
  title     = {{Modeling Dense Cross-Modal Interactions for Joint Entity-Relation Extraction}},
  author    = {Zhao, Shan and Hu, Minghao and Cai, Zhiping and Liu, Fang},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {4032-4038},
  doi       = {10.24963/IJCAI.2020/558},
  url       = {https://mlanthology.org/ijcai/2020/zhao2020ijcai-modeling/}
}