Beyond Pure Text: Summarizing Financial Reports Based on Both Textual and Tabular Data

Abstract

Abstractive text summarization is to generate concise summaries that well preserve both salient information and the overall semantic meanings of the given documents. However, real-world documents, e.g., financial reports, generally contain rich data such as charts and tabular data which invalidates most existing text summarization approaches. This paper is thus motivated to propose this novel approach to simultaneously summarize both textual and tabular data. Particularly, we first manually construct a “table+text → summary” dataset. Then, the tabular data is respectively embedded in a row-wise and column-wise manner, and the textual data is encoded at the sentence-level via an employed pre-trained model. We propose a salient detector gate respectively performed between each pair of row/column and sentence embeddings. The highly correlated content is considered as salient information that must be summarized. Extensive experiments have been performed on our constructed dataset and the promising results demonstrate the effectiveness of the proposed approach w.r.t. a number of both automatic and human evaluation criteria.

Cite

Text

Wang et al. "Beyond Pure Text: Summarizing Financial Reports Based on Both Textual and Tabular Data." International Joint Conference on Artificial Intelligence, 2023. doi:10.24963/IJCAI.2023/581

Markdown

[Wang et al. "Beyond Pure Text: Summarizing Financial Reports Based on Both Textual and Tabular Data." International Joint Conference on Artificial Intelligence, 2023.](https://mlanthology.org/ijcai/2023/wang2023ijcai-beyond/) doi:10.24963/IJCAI.2023/581

BibTeX

@inproceedings{wang2023ijcai-beyond,
  title     = {{Beyond Pure Text: Summarizing Financial Reports Based on Both Textual and Tabular Data}},
  author    = {Wang, Ziao and Jiang, Zelin and Zhang, Xiaofeng and Soon, Jaehyeon and Zhang, Jialu and Xiaoyao, Wang and Du, Hongwei},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2023},
  pages     = {5233-5241},
  doi       = {10.24963/IJCAI.2023/581},
  url       = {https://mlanthology.org/ijcai/2023/wang2023ijcai-beyond/}
}