NerCo: A Contrastive Learning Based Two-Stage Chinese NER Method

Abstract

Sequence labeling serves as the most commonly used scheme for Chinese named entity recognition(NER). However, traditional sequence labeling methods classify tokens within an entity into different classes according to their positions. As a result, different tokens in the same entity may be learned with representations that are isolated and unrelated in target representation space, which could finally negatively affect the subsequent performance of token classification. In this paper, we point out and define this problem as Entity Representation Segmentation in Label-semantics. And then we present NerCo: Named entity recognition with Contrastive learning, a novel NER framework which can better exploit labeled data and avoid the above problem. Following the pretrain-finetune paradigm, NerCo firstly guides the encoder to learn powerful label-semantics based representations by gathering the encoded token representations of the same Semantic Class while pushing apart that of different. Subsequently, NerCo finetunes the learned encoder for final entity prediction. Extensive experiments on several datasets demonstrate that our framework can consistently improve the baseline and achieve state-of-the-art performance.

Cite

Text

Zhang et al. "NerCo: A Contrastive Learning Based Two-Stage Chinese NER Method." International Joint Conference on Artificial Intelligence, 2023. doi:10.24963/IJCAI.2023/587

Markdown

[Zhang et al. "NerCo: A Contrastive Learning Based Two-Stage Chinese NER Method." International Joint Conference on Artificial Intelligence, 2023.](https://mlanthology.org/ijcai/2023/zhang2023ijcai-nerco/) doi:10.24963/IJCAI.2023/587

BibTeX

@inproceedings{zhang2023ijcai-nerco,
  title     = {{NerCo: A Contrastive Learning Based Two-Stage Chinese NER Method}},
  author    = {Zhang, Zai and Shi, Bin and Zhang, Haokun and Xu, Huang and Zhang, Yaodong and Wu, Yuefei and Dong, Bo and Zheng, Qinghua},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2023},
  pages     = {5287-5295},
  doi       = {10.24963/IJCAI.2023/587},
  url       = {https://mlanthology.org/ijcai/2023/zhang2023ijcai-nerco/}
}