DO-CoLM: Dynamic 3D Conformation Relationships Capture with Self-Adaptive Ordering Molecular Relational Modeling in Language Models

Abstract

Molecular Relational Learning (MRL) aims to understand interactions between molecular pairs, playing a critical role in advancing biochemical research. Recently, Large Language Models (LLMs), with their extensive knowledge bases and advanced reasoning capabilities, have emerged as powerful tools for MRL. However, existing LLMs, which primarily rely on SMILES strings and molecular graphs, face two major challenges. They struggle to capture molecular stereochemistry and dynamics, as molecules possess multiple 3D conformations with varying reactivity and dynamic transformation relationships that are essential for accurately predicting molecular interactions but cannot be effectively represented by 1D SMILES or 2D molecular graphs. Additionally, these models do not consider the autoregressive nature of LLMs, overlooking the impact of input order on model performance. To address these issues, we propose DO-CoLM: a Dynamic relationship capture and self-adaptive Ordering 3D molecular Conformation LM for MRL. By introducing modules to dynamically model intra-molecular and inter-molecular conformational relationships and adaptively adjust the molecular modality input order, DO-CoLM achieves superior performance, as demonstrated by experimental results on 12 cross-domain datasets.

Cite

Text

Chen et al. "DO-CoLM: Dynamic 3D Conformation Relationships Capture with Self-Adaptive Ordering Molecular Relational Modeling in Language Models." International Joint Conference on Artificial Intelligence, 2025. doi:10.24963/IJCAI.2025/546

Markdown

[Chen et al. "DO-CoLM: Dynamic 3D Conformation Relationships Capture with Self-Adaptive Ordering Molecular Relational Modeling in Language Models." International Joint Conference on Artificial Intelligence, 2025.](https://mlanthology.org/ijcai/2025/chen2025ijcai-colm/) doi:10.24963/IJCAI.2025/546

BibTeX

@inproceedings{chen2025ijcai-colm,
  title     = {{DO-CoLM: Dynamic 3D Conformation Relationships Capture with Self-Adaptive Ordering Molecular Relational Modeling in Language Models}},
  author    = {Chen, Zhuo and Zhang, Jiahui and Wang, Sihan and Xiang, Hongxin and Wang, Jianmin and Du, Wenjie and Wang, Yang},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2025},
  pages     = {4905-4913},
  doi       = {10.24963/IJCAI.2025/546},
  url       = {https://mlanthology.org/ijcai/2025/chen2025ijcai-colm/}
}