Going Beyond Consistency: Target-Oriented Multi-View Graph Neural Network

Abstract

Multi‐view learning has emerged as a pivotal research area driven by the growing heterogeneity of real‐world data, and graph neural network-based models, modeling multi-view data as multi-view graphs, have achieved remarkable performance by revealing its deep semantics. However, by assuming cross‐view consistency, most approaches collect not only task-relevant (determinative) semantics but also symbiotic yet task-irrelevant (incidental) factors are collected to obscure model inference. Furthermore, these approaches often lack rigorous theoretical analysis that bridges training data to test data. To address these issues, we propose Target-oriented Graph Neural Network (TGNN), a novel framework that goes beyond traditional consistency by prioritizing task-relevant information, ensuring alignment with the target. Specifically, TGNN employs a class-level dual-objective loss to minimize the classification similarity between determinative and incidental factors, accentuating the former while suppressing the latter during model inference. Meanwhile, to ensure consistency between the learned semantics and predictions in representation learning, we introduce a penalty term that aims to amplify the divergence between these two types of factors. Furthermore, we derive an upper bound on the loss discrepancy between training and test data, providing formal guarantees for generalization to test domains. Extensive experiments conducted on three types of multi-view datasets validate the superiority of TGNN.

Cite

Text

Huang et al. "Going Beyond Consistency: Target-Oriented Multi-View Graph Neural Network." International Joint Conference on Artificial Intelligence, 2025. doi:10.24963/IJCAI.2025/604

Markdown

[Huang et al. "Going Beyond Consistency: Target-Oriented Multi-View Graph Neural Network." International Joint Conference on Artificial Intelligence, 2025.](https://mlanthology.org/ijcai/2025/huang2025ijcai-going/) doi:10.24963/IJCAI.2025/604

BibTeX

@inproceedings{huang2025ijcai-going,
  title     = {{Going Beyond Consistency: Target-Oriented Multi-View Graph Neural Network}},
  author    = {Huang, Sujia and Fu, Lele and Zhuang, Shuman and Qiu, Yide and Huang, Bo and Cui, Zhen and Zhang, Tong},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2025},
  pages     = {5426-5434},
  doi       = {10.24963/IJCAI.2025/604},
  url       = {https://mlanthology.org/ijcai/2025/huang2025ijcai-going/}
}