MTGIB-UNet: A Multi-Task Graph Information Bottleneck and Uncertainty Weighted Network for ADMET Prediction
Abstract
Accurate prediction of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties is crucial in drug development, as these properties directly impact a drug's efficacy and safety. However, existing multi-task learning models often face challenges related to noise interference and task conflicts when dealing with complex molecular structures. To address these issues, we propose a novel multi-task Graph Neural Network (GNN) model, \textbf{MTGIB-UNet}. The model begins by encoding molecular graphs to capture intricate molecular structure information. Subsequently, based on the Graph Information Bottleneck (GIB) principle, the model compresses the information flow by extracting subgraphs, retaining task-relevant features while removing noise for each task. These embeddings are then fused through a gated network that dynamically adjusts the contribution weights of auxiliary tasks to the primary task. Specifically, an uncertainty weighting (UW) strategy is applied, with additional emphasis placed on the primary task, allowing dynamic adjustment of task weights while strengthening the influence of the primary task on model training. Experiments on standard ADMET datasets demonstrate that our model outperforms existing methods. Additionally, the model shows good interpretability by identifying key molecular substructures related to specific ADMET endpoints.
Cite
Text
Li et al. "MTGIB-UNet: A Multi-Task Graph Information Bottleneck and Uncertainty Weighted Network for ADMET Prediction." International Joint Conference on Artificial Intelligence, 2025. doi:10.24963/IJCAI.2025/836Markdown
[Li et al. "MTGIB-UNet: A Multi-Task Graph Information Bottleneck and Uncertainty Weighted Network for ADMET Prediction." International Joint Conference on Artificial Intelligence, 2025.](https://mlanthology.org/ijcai/2025/li2025ijcai-mtgib/) doi:10.24963/IJCAI.2025/836BibTeX
@inproceedings{li2025ijcai-mtgib,
title = {{MTGIB-UNet: A Multi-Task Graph Information Bottleneck and Uncertainty Weighted Network for ADMET Prediction}},
author = {Li, Xuqiang and Du, Wenjie and Xia, Jun and Wang, Jianmin and Wang, Xiaoqi and Yang, Yang and Wang, Yang},
booktitle = {International Joint Conference on Artificial Intelligence},
year = {2025},
pages = {7518-7526},
doi = {10.24963/IJCAI.2025/836},
url = {https://mlanthology.org/ijcai/2025/li2025ijcai-mtgib/}
}