Odyssey : Empowering Minecraft Agents with Open-World Skills

Abstract

Recent studies have delved into constructing generalist agents for open-world environments like Minecraft. Despite the encouraging results, existing efforts mainly focus on solving basic programmatic tasks, e.g., material collection and tool-crafting following the Minecraft tech-tree, treating the ObtainDiamond task as the ultimate goal. This limitation stems from the narrowly defined set of actions available to agents, requiring them to learn effective long-horizon strategies from scratch. Consequently, discovering diverse gameplay opportunities in the open world becomes challenging. In this work, we introduce Odyssey, a new framework that empowers Large Language Model (LLM)-based agents with open-world skills to explore the vast Minecraft world. Odyssey comprises three key parts: (1) An interactive agent with an open-world skill library that consists of 40 primitive skills and 183 compositional skills. (2) A fine-tuned LLaMA-3 model trained on a large question-answering dataset with 390k+ instruction entries derived from the Minecraft Wiki. (3) A new agent capability benchmark includes the long-term planning task, the dynamic-immediate planning task, and the autonomous exploration task. Extensive experiments demonstrate that the proposed Odyssey framework can effectively evaluate different capabilities of LLM-based agents. All datasets, model weights, and code are publicly available to motivate future research on more advanced autonomous agent solutions.

Cite

Text

Liu et al. "Odyssey : Empowering Minecraft Agents with Open-World Skills." International Joint Conference on Artificial Intelligence, 2025. doi:10.24963/IJCAI.2025/22

Markdown

[Liu et al. "Odyssey : Empowering Minecraft Agents with Open-World Skills." International Joint Conference on Artificial Intelligence, 2025.](https://mlanthology.org/ijcai/2025/liu2025ijcai-odyssey/) doi:10.24963/IJCAI.2025/22

BibTeX

@inproceedings{liu2025ijcai-odyssey,
  title     = {{Odyssey : Empowering Minecraft Agents with Open-World Skills}},
  author    = {Liu, Shunyu and Li, Yaoru and Zhang, Kongcheng and Cui, Zhenyu and Fang, Wenkai and Zheng, Yuxuan and Zheng, Tongya and Song, Mingli},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2025},
  pages     = {187-195},
  doi       = {10.24963/IJCAI.2025/22},
  url       = {https://mlanthology.org/ijcai/2025/liu2025ijcai-odyssey/}
}