Capturing Individuality and Commonality Between Anchor Graphs for Multi-View Clustering

Abstract

The use of anchors often leads to better efficiency and scalability, making them highly favored. However, there is a challenge in anchor-based multi-view subspace learning. A unified anchor graph overly emphasize the commonality between views, failing to adequately capture the view-specific individuality. This has led some models to independently explore the individuality of each view before aligning and integrating them, often achieving better performance but making the process more cumbersome. Therefore, this paper proposes a new model, simultaneously capturing the individuality and commonality between anchor graphs for multi-view clustering. The model has three notable advantages: First, it allows view-specific anchor graphs to align in real-time with a common anchor graph as a reference, eliminating the need for post-alignment. Second, it enforces a cluster-wise structure among anchors and balances sample distribution among them, providing strong discriminative power. Lastly, it maintains linear complexity with respect to the numbers of samples and anchors, avoiding the significant time costs associated with their increase. Comprehensive experiments demonstrate the effectiveness and efficiency of our method compared to various state-of-the-art algorithms.

Cite

Text

Lu et al. "Capturing Individuality and Commonality Between Anchor Graphs for Multi-View Clustering." International Joint Conference on Artificial Intelligence, 2025. doi:10.24963/IJCAI.2025/652

Markdown

[Lu et al. "Capturing Individuality and Commonality Between Anchor Graphs for Multi-View Clustering." International Joint Conference on Artificial Intelligence, 2025.](https://mlanthology.org/ijcai/2025/lu2025ijcai-capturing/) doi:10.24963/IJCAI.2025/652

BibTeX

@inproceedings{lu2025ijcai-capturing,
  title     = {{Capturing Individuality and Commonality Between Anchor Graphs for Multi-View Clustering}},
  author    = {Lu, Zhoumin and Yu, Yongbo and Ma, Linru and Nie, Feiping and Wang, Rong},
  booktitle = {International Joint Conference on Artificial Intelligence},
  year      = {2025},
  pages     = {5860-5868},
  doi       = {10.24963/IJCAI.2025/652},
  url       = {https://mlanthology.org/ijcai/2025/lu2025ijcai-capturing/}
}