New Inference Rules for Max-SAT
Abstract
Exact Max-SAT solvers, compared with SAT solvers, apply little inference at each node of the proof tree. Commonly used SAT inference rules like unit propagation produce a simplified formula that preserves satisfiability but, unfortunately, solving the Max-SAT problem for the simplified formula is not equivalent to solving it for the original formula. In this paper, we define a number of original inference rules that, besides being applied efficiently, transform Max-SAT instances into equivalent Max-SAT instances which are easier to solve. The soundness of the rules, that can be seen as refinements of unit resolution adapted to Max-SAT, are proved in a novel and simple way via an integer programming transformation. With the aim of finding out how powerful the inference rules are in practice, we have developed a new Max-SAT solver, called MaxSatz, which incorporates those rules, and performed an experimental investigation. The results provide empirical evidence that MaxSatz is very competitive, at least, on random Max-2SAT, random Max-3SAT, Max-Cut, and Graph 3-coloring instances, as well as on the benchmarks from the Max-SAT Evaluation 2006.
Cite
Text
Li et al. "New Inference Rules for Max-SAT." Journal of Artificial Intelligence Research, 2007. doi:10.1613/JAIR.2215Markdown
[Li et al. "New Inference Rules for Max-SAT." Journal of Artificial Intelligence Research, 2007.](https://mlanthology.org/jair/2007/li2007jair-new/) doi:10.1613/JAIR.2215BibTeX
@article{li2007jair-new,
title = {{New Inference Rules for Max-SAT}},
author = {Li, Chu Min and Manyà, Felip and Planes, Jordi},
journal = {Journal of Artificial Intelligence Research},
year = {2007},
pages = {321-359},
doi = {10.1613/JAIR.2215},
volume = {30},
url = {https://mlanthology.org/jair/2007/li2007jair-new/}
}