Uniform Random Generation and Dominance Testing for CP-Nets

Abstract

The generation of preferences represented as CP-nets for experiments and empirical testing has typically been done in an ad hoc manner that may have introduced a large statistical bias in previous experimental work. We present novel polynomial-time algorithms for generating CP-nets with n nodes and maximum in-degree c uniformly at random. We extend this result to several statistical cultures commonly used in the social choice and preference reasoning literature. A CP-net is composed of both a graph and underlying cp-statements; our algorithm is the first to provably generate both the graph structure and cp-statements, and hence the underlying preference orders themselves, uniformly at random. We have released this code as a free and open source project. We use the uniform generation algorithm to investigate the maximum and expected flipping lengths, i.e., the maximum length over all outcomes o and o', of a minimal proof that o is preferred to o'. Using our new statistical evidence, we conjecture that, for CP-nets with binary variables and complete conditional preference tables, the expected flipping length is polynomial in the number of preference variables. This has positive implications for the usability of CP-nets as compact preference models.

Cite

Text

Allen et al. "Uniform Random Generation and Dominance Testing for CP-Nets." Journal of Artificial Intelligence Research, 2017. doi:10.1613/JAIR.5455

Markdown

[Allen et al. "Uniform Random Generation and Dominance Testing for CP-Nets." Journal of Artificial Intelligence Research, 2017.](https://mlanthology.org/jair/2017/allen2017jair-uniform/) doi:10.1613/JAIR.5455

BibTeX

@article{allen2017jair-uniform,
  title     = {{Uniform Random Generation and Dominance Testing for CP-Nets}},
  author    = {Allen, Thomas E. and Goldsmith, Judy and Justice, Hayden Elizabeth and Mattei, Nicholas and Raines, Kayla},
  journal   = {Journal of Artificial Intelligence Research},
  year      = {2017},
  pages     = {771-813},
  doi       = {10.1613/JAIR.5455},
  volume    = {59},
  url       = {https://mlanthology.org/jair/2017/allen2017jair-uniform/}
}