Approximating Weighted and Priced Bribery in Scoring Rules

Abstract

The classic Bribery problem is to find a minimal subset of voters who need to change their vote to make some preferred candidate win. Its important generalizations consider voters who are weighted and also have different prices. We provide an approximate solution for these problems for a broad family of scoring rules (which includes Borda, t-approval, and Dowdall), in the following sense: for constant weights and prices, if there exists a strategy which costs κ, we efficiently find a strategy which costs at most κ + Õ( √ κ). An extension for non-constant weights and prices is also given. Our algorithm is based on a randomized reduction from these Bribery generalizations to weighted coalitional manipulation (WCM). To solve this WCM instance, we apply the Birkhoff-von Neumann (BvN) decomposition to a fractional manipulation matrix. This allows us to limit the size of the possible ballot search space reducing it from exponential to polynomial, while still obtaining good approximation guarantees. Finding a solution in the truncated search space yields a new algorithm for WCM, which is of independent interest.

Cite

Text

Keller et al. "Approximating Weighted and Priced Bribery in Scoring Rules." Journal of Artificial Intelligence Research, 2019. doi:10.1613/JAIR.1.11538

Markdown

[Keller et al. "Approximating Weighted and Priced Bribery in Scoring Rules." Journal of Artificial Intelligence Research, 2019.](https://mlanthology.org/jair/2019/keller2019jair-approximating/) doi:10.1613/JAIR.1.11538

BibTeX

@article{keller2019jair-approximating,
  title     = {{Approximating Weighted and Priced Bribery in Scoring Rules}},
  author    = {Keller, Orgad and Hassidim, Avinatan and Hazon, Noam},
  journal   = {Journal of Artificial Intelligence Research},
  year      = {2019},
  pages     = {1057-1098},
  doi       = {10.1613/JAIR.1.11538},
  volume    = {66},
  url       = {https://mlanthology.org/jair/2019/keller2019jair-approximating/}
}