Regret Bounds for Reinforcement Learning via Markov Chain Concentration

Abstract

We give a simple optimistic algorithm for which it is easy to derive regret bounds of O(sqrt{t-mix SAT}) steps in uniformly ergodic Markov decision processes with S states, A actions, and mixing time parameter t-mix. These bounds are the first regret bounds in the general, non-episodic setting with an optimal dependence on all given parameters. They could only be improved by using an alternative mixing time parameter.

Cite

Text

Ortner. "Regret Bounds for Reinforcement Learning via Markov Chain Concentration." Journal of Artificial Intelligence Research, 2020. doi:10.1613/JAIR.1.11316

Markdown

[Ortner. "Regret Bounds for Reinforcement Learning via Markov Chain Concentration." Journal of Artificial Intelligence Research, 2020.](https://mlanthology.org/jair/2020/ortner2020jair-regret/) doi:10.1613/JAIR.1.11316

BibTeX

@article{ortner2020jair-regret,
  title     = {{Regret Bounds for Reinforcement Learning via Markov Chain Concentration}},
  author    = {Ortner, Ronald},
  journal   = {Journal of Artificial Intelligence Research},
  year      = {2020},
  pages     = {115-128},
  doi       = {10.1613/JAIR.1.11316},
  volume    = {67},
  url       = {https://mlanthology.org/jair/2020/ortner2020jair-regret/}
}