Learning to Design Fair and Private Voting Rules

Abstract

Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy. This paper appears in the special track on AI & Society.

Cite

Text

Mohsin et al. "Learning to Design Fair and Private Voting Rules." Journal of Artificial Intelligence Research, 2022. doi:10.1613/JAIR.1.13734

Markdown

[Mohsin et al. "Learning to Design Fair and Private Voting Rules." Journal of Artificial Intelligence Research, 2022.](https://mlanthology.org/jair/2022/mohsin2022jair-learning/) doi:10.1613/JAIR.1.13734

BibTeX

@article{mohsin2022jair-learning,
  title     = {{Learning to Design Fair and Private Voting Rules}},
  author    = {Mohsin, Farhad and Liu, Ao and Chen, Pin-Yu and Rossi, Francesca and Xia, Lirong},
  journal   = {Journal of Artificial Intelligence Research},
  year      = {2022},
  pages     = {1139-1176},
  doi       = {10.1613/JAIR.1.13734},
  volume    = {75},
  url       = {https://mlanthology.org/jair/2022/mohsin2022jair-learning/}
}