Low Permutation-Rank Matrices: Structural Properties and Noisy Completion
Abstract
We consider the problem of noisy matrix completion, in which the goal is to reconstruct a structured matrix whose entries are partially observed in noise. Standard approaches to this underdetermined inverse problem are based on assuming that the underlying matrix has low rank, or is well-approximated by a low rank matrix. In this paper, we propose a richer model based on what we term the permutation-rank of a matrix. We first describe how the classical non-negative rank model enforces restrictions that may be undesirable in practice, and how and these restrictions can be avoided by using the richer permutation-rank model. Second, we establish the minimax rates of estimation under the new permutation-based model, and prove that surprisingly, the minimax rates are equivalent up to logarithmic factors to those for estimation under the typical low rank model. Third, we analyze a computationally efficient singular-value-thresholding algorithm, known to be optimal for the low-rank setting, and show that it also simultaneously yields a consistent estimator for the low-permutation rank setting. Finally, we present various structural results characterizing the uniqueness of the permutation-rank decomposition, and characterizing convex approximations of the permutation-rank polytope.
Cite
Text
Shah et al. "Low Permutation-Rank Matrices: Structural Properties and Noisy Completion." Journal of Machine Learning Research, 2019.Markdown
[Shah et al. "Low Permutation-Rank Matrices: Structural Properties and Noisy Completion." Journal of Machine Learning Research, 2019.](https://mlanthology.org/jmlr/2019/shah2019jmlr-low/)BibTeX
@article{shah2019jmlr-low,
title = {{Low Permutation-Rank Matrices: Structural Properties and Noisy Completion}},
author = {Shah, Nihar B. and Balakrishnan, Sivaraman and Wainwright, Martin J.},
journal = {Journal of Machine Learning Research},
year = {2019},
pages = {1-43},
volume = {20},
url = {https://mlanthology.org/jmlr/2019/shah2019jmlr-low/}
}