Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning

Abstract

In many real-world settings, a team of agents must coordinate its behaviour while acting in a decentralised fashion. At the same time, it is often possible to train the agents in a centralised fashion where global state information is available and communication constraints are lifted. Learning joint action-values conditioned on extra state information is an attractive way to exploit centralised learning, but the best strategy for then extracting decentralised policies is unclear. Our solution is QMIX, a novel value-based method that can train decentralised policies in a centralised end-to-end fashion. QMIX employs a mixing network that estimates joint action-values as a monotonic combination of per-agent values. We structurally enforce that the joint-action value is monotonic in the per-agent values, through the use of non-negative weights in the mixing network, which guarantees consistency between the centralised and decentralised policies. To evaluate the performance of QMIX, we propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning. We evaluate QMIX on a challenging set of SMAC scenarios and show that it significantly outperforms existing multi-agent reinforcement learning methods.

Cite

Text

Rashid et al. "Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning." Journal of Machine Learning Research, 2020.

Markdown

[Rashid et al. "Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning." Journal of Machine Learning Research, 2020.](https://mlanthology.org/jmlr/2020/rashid2020jmlr-monotonic/)

BibTeX

@article{rashid2020jmlr-monotonic,
  title     = {{Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning}},
  author    = {Rashid, Tabish and Samvelyan, Mikayel and de Witt, Christian Schroeder and Farquhar, Gregory and Foerster, Jakob and Whiteson, Shimon},
  journal   = {Journal of Machine Learning Research},
  year      = {2020},
  pages     = {1-51},
  volume    = {21},
  url       = {https://mlanthology.org/jmlr/2020/rashid2020jmlr-monotonic/}
}