Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach
Abstract
We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix into a sparse matrix of perturbations plus a low-rank matrix containing the ground truth. SLR is a fundamental problem in Operations Research and Machine Learning which arises in various applications, including data compression, latent semantic indexing, collaborative filtering, and medical imaging. We introduce a novel formulation for SLR that directly models its underlying discreteness. For this formulation, we develop an alternating minimization heuristic that computes high-quality solutions and a novel semidefinite relaxation that provides meaningful bounds for the solutions returned by our heuristic. We also develop a custom branch-and-bound algorithm that leverages our heuristic and convex relaxations to solve small instances of SLR to certifiable (near) optimality. Given an input n-by-n matrix, our heuristic scales to solve instances where n = 10000 in minutes, our relaxation scales to instances where n = 200 in hours, and our branch-and-bound algorithm scales to instances where n = 25 in minutes. Our numerical results demonstrate that our approach outperforms existing state-of-the-art approaches in terms of rank, sparsity, and mean-square error while maintaining a comparable runtime.
Cite
Text
Bertsimas et al. "Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach." Journal of Machine Learning Research, 2023.Markdown
[Bertsimas et al. "Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach." Journal of Machine Learning Research, 2023.](https://mlanthology.org/jmlr/2023/bertsimas2023jmlr-sparse-a/)BibTeX
@article{bertsimas2023jmlr-sparse-a,
title = {{Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach}},
author = {Bertsimas, Dimitris and Cory-Wright, Ryan and Johnson, Nicholas A. G.},
journal = {Journal of Machine Learning Research},
year = {2023},
pages = {1-51},
volume = {24},
url = {https://mlanthology.org/jmlr/2023/bertsimas2023jmlr-sparse-a/}
}