JMLR 2025

258 papers

"What Is Different Between These Datasets?" a Framework for Explaining Data Distribution Shifts Varun Babbar, Zhicheng Guo, Cynthia Rudin
PDF Code
(De)-Regularized Maximum Mean Discrepancy Gradient Flow Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Anna Korba, Arthur Gretton, Bharath K. Sriperumbudur
PDF
A Comparative Evaluation of Quantification Methods Tobias Schumacher, Markus Strohmaier, Florian Lemmerich
PDF Code
A Decentralized Proximal Gradient Tracking Algorithm for Composite Optimization on Riemannian Manifolds Lei Wang, Le Bao, Xin Liu
PDF
A Hybrid Weighted Nearest Neighbour Classifier for Semi-Supervised Learning Stephen M. S. Lee, Mehdi Soleymani
PDF
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-Sum Optimization Junwen Qiu, Xiao Li, Andre Milzarek
PDF
A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation Hugo Lebeau, Florent Chatelain, Romain Couillet
PDF
A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs Lukas Zierahn, Dirk van der Hoeven, Tal Lancewicki, Aviv Rosenberg, Nicolò Cesa-Bianchi
PDF Code
A Unified Framework to Enforce, Discover, and Promote Symmetry in Machine Learning Samuel E. Otto, Nicholas Zolman, J. Nathan Kutz, Steven L. Brunton
PDF Code
Accelerating Optimization over the Space of Probability Measures Shi Chen, Qin Li, Oliver Tse, Stephen J. Wright
PDF
Actor-Critic Learning for Mean-Field Control in Continuous Time Noufel Frikha, Maximilien Germain, Mathieu Lauriere, Huyen Pham, Xuanye Song
PDF
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback Boxin Zhao, Lingxiao Wang, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Chaochao Chen, Mladen Kolar
PDF Code
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos Shao-Bo Lin, Xiaotong Liu, Di Wang, Hai Zhang, Ding-Xuan Zhou
PDF
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization Shouri Hu, Haowei Wang, Zhongxiang Dai, Bryan Kian Hsiang Low, Szu Hui Ng
PDF
Affine Rank Minimization via Asymptotic Log-Det Iteratively Reweighted Least Squares Sebastian Krämer
PDF
Algorithms for Ridge Estimation with Convergence Guarantees Wanli Qiao, Wolfgang Polonik
PDF
An Adaptive Parameter-Free and Projection-Free Restarting Level Set Method for Constrained Convex Optimization Under the Error Bound Condition Qihang Lin, Negar Soheili, Runchao Ma, Selvaprabu Nadarajah
PDF
An Asymptotically Optimal Coordinate Descent Algorithm for Learning Bayesian Networks from Gaussian Models Tong Xu, Simge Küçükyavuz, Ali Shojaie, Armeen Taeb
PDF Code
An Augmentation Overlap Theory of Contrastive Learning Qi Zhang, Yifei Wang, Yisen Wang
PDF Code
An Axiomatic Definition of Hierarchical Clustering Ery Arias-Castro, Elizabeth Coda
PDF
Are Ensembles Getting Better All the Time? Pierre-Alexandre Mattei, Damien Garreau
PDF Code
Assumption-Lean and Data-Adaptive Post-Prediction Inference Jiacheng Miao, Xinran Miao, Yixuan Wu, Jiwei Zhao, Qiongshi Lu
PDF Code
Asymptotic Inference for Multi-Stage Stationary Treatment Policy with Variable Selection Daiqi Gao, Yufeng Liu, Donglin Zeng
PDF Code
Autoencoders in Function Space Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, T. J. Sullivan
PDF Code
Bagged K-Distance for Mode-Based Clustering Using the Probability of Localized Level Sets Hanyuan Hang
PDF
Bagged Regularized K-Distances for Anomaly Detection Yuchao Cai, Hanfang Yang, Yuheng Ma, Hanyuan Hang
PDF
Bayes Meets Bernstein at the Meta Level: An Analysis of Fast Rates in Meta-Learning with PAC-Bayes Charles Riou, Pierre Alquier, Badr-Eddine Chérief-Abdellatif
PDF
Bayesian Data Sketching for Varying Coefficient Regression Models Rajarshi Guhaniyogi, Laura Baracaldo, Sudipto Banerjee
PDF
Bayesian Multi-Group Gaussian Process Models for Heterogeneous Group-Structured Data Didong Li, Andrew Jones, Sudipto Banerjee, Barbara E. Engelhardt
PDF Code
Bayesian Scalar-on-Image Regression with a Spatially Varying Single-Layer Neural Network Prior Ben Wu, Keru Wu, Jian Kang
PDF
Bayesian Sparse Gaussian Mixture Model for Clustering in High Dimensions Dapeng Yao, Fangzheng Xie, Yanxun Xu
PDF
Best Linear Unbiased Estimate from Privatized Contingency Tables Jordan Awan, Adam Edwards, Paul Bartholomew, Andrew Sillers
PDF Code
Biological Sequence Kernels with Guaranteed Flexibility Alan N. Amin, Debora S. Marks, Eli N. Weinstein
PDF Code
BitNet: 1-Bit Pre-Training for Large Language Models Hongyu Wang, Shuming Ma, Lingxiao Ma, Lei Wang, Wenhui Wang, Li Dong, Shaohan Huang, Huaijie Wang, Jilong Xue, Ruiping Wang, Yi Wu, Furu Wei
PDF
Boosting Causal Additive Models Maximilian Kertel, Nadja Klein
PDF Code
Calibrated Inference: Statistical Inference That Accounts for Both Sampling Uncertainty and Distributional Uncertainty Yujin Jeong, Dominik Rothenhäusler
PDF
Categorical Semantics of Compositional Reinforcement Learning Georgios Bakirtzis, Michail Savvas, Ufuk Topcu
PDF
Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang, Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, Thomas Icard
PDF
Causal Effect of Functional Treatment Ruoxu Tan, Wei Huang, Zheng Zhang, Guosheng Yin
PDF Code
Characterizing Dynamical Stability of Stochastic Gradient Descent in Overparameterized Learning Dennis Chemnitz, Maximilian Engel
PDF
Classification in the High Dimensional Anisotropic Mixture Framework: A New Take on Robust Interpolation Stanislav Minsker, Mohamed Ndaoud, Yiqiu Shen
PDF
ClimSim-Online: A Large Multi-Scale Dataset and Framework for Hybrid Physics-ML Climate Emulation Sungduk Yu, Zeyuan Hu, Akshay Subramaniam, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus C. Will, Gunnar Behrens, Julius J. M. Busecke, Nora Loose, Charles I Stern, Tom Beucler, Bryce Harrop, Helge Heuer, Benjamin R Hillman, Andrea Jenney, Nana Liu, Alistair White, Tian Zheng, Zhiming Kuang, Fiaz Ahmed, Elizabeth Barnes, Noah D. Brenowitz, Christopher Bretherton, Veronika Eyring, Savannah Ferretti, Nicholas Lutsko, Pierre Gentine, Stephan Mandt, J. David Neelin, Rose Yu, Laure Zanna, Nathan M. Urban, Janni Yuval, Ryan Abernathey, Pierre Baldi, Wayne Chuang, Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Po-Lun Ma, Sara Shamekh, Guang Zhang, Michael Pritchard
PDF Code
Collaborative Likelihood-Ratio Estimation over Graphs Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos
PDF Code
Composite Goodness-of-Fit Tests with Kernels Oscar Key, Arthur Gretton, François-Xavier Briol, Tamara Fernandez
PDF Code
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching Jannis Chemseddine, Paul Hagemann, Gabriele Steidl, Christian Wald
PDF Code
Contextual Bandits with Stage-Wise Constraints Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett
PDF
Continuously Evolving Rewards in an Open-Ended Environment Richard M. Bailey
PDF
Convergence and Sample Complexity of Natural Policy Gradient Primal-Dual Methods for Constrained MDPs Dongsheng Ding, Kaiqing Zhang, Jiali Duan, Tamer Basar, Mihailo R. Jovanovic
PDF
Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation David Holzmüller, Francis Bach
PDF Code
Copula-Based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding Jiajing Zheng, Alexander D'Amour, Alexander Franks
PDF Code
Curvature-Based Clustering on Graphs Yu Tian, Zachary Lubberts, Melanie Weber
PDF
DAGs as Minimal I-Maps for the Induced Models of Causal Bayesian Networks Under Conditioning Xiangdong Xie, Jiahua Guo, Yi Sun
PDF Code
Data-Driven Performance Guarantees for Classical and Learned Optimizers Rajiv Sambharya, Bartolomeo Stellato
PDF Code
Decentralized Asynchronous Optimization with DADAO Allows Decoupling and Acceleration Adel Nabli, Edouard Oyallon
PDF Code
Decentralized Bilevel Optimization: A Perspective from Transient Iteration Complexity Boao Kong, Shuchen Zhu, Songtao Lu, Xinmeng Huang, Kun Yuan
PDF
Decentralized Sparse Linear Regression via Gradient-Tracking Marie Maros, Gesualdo Scutari, Ying Sun, Guang Cheng
PDF
Deep Generative Models: Complexity, Dimensionality, and Approximation Kevin Wang, Hongqian Niu, Yixin Wang, Didong Li
PDF Code
Deep Neural Networks Are Adaptive to Function Regularity and Data Distribution in Approximation and Estimation Hao Liu, Jiahui Cheng, Wenjing Liao
PDF
Deep Out-of-Distribution Uncertainty Quantification via Weight Entropy Maximization Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis
PDF
Deep Variational Multivariate Information Bottleneck - A Framework for Variational Losses Eslam Abdelaleem, Ilya Nemenman, K. Michael Martini
PDF Code
Degree of Interference: A General Framework for Causal Inference Under Interference Yuki Ohnishi, Bikram Karmakar, Arman Sabbaghi
PDF
Deletion Robust Non-Monotone Submodular Maximization over Matroids Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Morteza Zadimoghaddam
PDF
Density Estimation Using the Perceptron Patrik Róbert Gerber, Tianze Jiang, Yury Polyanskiy, Rui Sun
PDF
Derivative-Informed Neural Operator Acceleration of Geometric MCMC for Infinite-Dimensional Bayesian Inverse Problems Lianghao Cao, Thomas O'Leary-Roseberry, Omar Ghattas
PDF Code
Determine the Number of States in Hidden Markov Models via Marginal Likelihood Yang Chen, Cheng-Der Fuh, Chu-Lan Michael Kao
PDF
Diffeomorphism-Based Feature Learning Using Poincaré Inequalities on Augmented Input Space Romain Verdière, Clémentine Prieur, Olivier Zahm
PDF
Differentially Private Bootstrap: New Privacy Analysis and Inference Strategies Zhanyu Wang, Guang Cheng, Jordan Awan
PDF Code
Differentially Private Multivariate Medians Kelly Ramsay, Aukosh Jagannath, Shoja'eddin Chenouri
PDF Code
Directed Cyclic Graphs for Simultaneous Discovery of Time-Lagged and Instantaneous Causality from Longitudinal Data Using Instrumental Variables Wei Jin, Yang Ni, Amanda B. Spence, Leah H. Rubin, Yanxun Xu
PDF Code
DisC2o-HD: Distributed Causal Inference with Covariates Shift for Analyzing Real-World High-Dimensional Data Jiayi Tong, Jie Hu, George Hripcsak, Yang Ning, Yong Chen
PDF
Distributed Stochastic Bilevel Optimization: Improved Complexity and Heterogeneity Analysis Youcheng Niu, Jinming Xu, Ying Sun, Yan Huang, Li Chai
PDF
Distribution Estimation Under the Infinity Norm Aryeh Kontorovich, Amichai Painsky
PDF
Distribution Free Tests for Model Selection Based on Maximum Mean Discrepancy with Estimated Parameters Florian Brück, Jean-David Fermanian, Aleksey Min
PDF Code
DRM Revisited: A Complete Error Analysis Yuling Jiao, Ruoxuan Li, Peiying Wu, Jerry Zhijian Yang, Pingwen Zhang
PDF
Dynamic Angular Synchronization Under Smoothness Constraints Ernesto Araya, Mihai Cucuringu, Hemant Tyagi
PDF Code
Dynamic Bayesian Learning for Spatiotemporal Mechanistic Models Sudipto Banerjee, Xiang Chen, Ian Frankenburg, Daniel Zhou
PDF Code
Early Alignment in Two-Layer Networks Training Is a Two-Edged Sword Etienne Boursier, Nicolas Flammarion
PDF Code
EF21 with Bells & Whistles: Six Algorithmic Extensions of Modern Error Feedback Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, Peter Richtárik
PDF Code
Efficient and Robust Semi-Supervised Estimation of Average Treatment Effect with Partially Annotated Treatment and Response Jue Hou, Rajarshi Mukherjee, Tianxi Cai
PDF Code
Efficient and Robust Transfer Learning of Optimal Individualized Treatment Regimes with Right-Censored Survival Data Pan Zhao, Julie Josse, Shu Yang
PDF Code
Efficient Knowledge Deletion from Trained Models Through Layer-Wise Partial Machine Unlearning Vinay Chakravarthi Gogineni, Esmaeil S. Nadimi
PDF
Efficient Methods for Non-Stationary Online Learning Peng Zhao, Yan-Feng Xie, Lijun Zhang, Zhi-Hua Zhou
PDF
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling Antoine Chatalic, Nicolas Schreuder, Ernesto De Vito, Lorenzo Rosasco
PDF Code
Efficient Online Prediction for High-Dimensional Time Series via Joint Tensor Tucker Decomposition Zhenting Luan, Defeng Sun, Haoning Wang, Liping Zhang
PDF
Efficiently Escaping Saddle Points in Bilevel Optimization Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, Lifeng Lai
PDF
EMaP: Explainable AI with Manifold-Based Perturbations Minh Nhat Vu, Huy Quang Mai, My T. Thai
PDF
Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods Bertille Follain, Francis Bach
PDF Code
Enhancing Graph Representation Learning with Localized Topological Features Zuoyu Yan, Qi Zhao, Ze Ye, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, Chao Chen
PDF
Error Bounds for Particle Gradient Descent, and Extensions of the Log-Sobolev and Talagrand Inequalities Rocco Caprio, Juan Kuntz, Samuel Power, Adam M. Johansen
PDF
Error Estimation and Adaptive Tuning for Unregularized Robust M-Estimator Pierre C. Bellec, Takuya Koriyama
PDF
Estimating Network-Mediated Causal Effects via Principal Components Network Regression Alex Hayes, Mark M. Fredrickson, Keith Levin
PDF Code
Estimation of Local Geometric Structure on Manifolds from Noisy Data Yariv Aizenbud, Barak Sober
PDF Code
Evaluation of Active Feature Acquisition Methods for Time-Varying Feature Settings Henrik von Kleist, Alireza Zamanian, Ilya Shpitser, Narges Ahmidi
PDF
Exponential Family Graphical Models: Correlated Replicates and Unmeasured Confounders, with Applications to fMRI Data Yanxin Jin, Yang Ning, Kean Ming Tan
PDF
Extending Temperature Scaling with Homogenizing Maps Christopher Qian, Feng Liang, Jason Adams
PDF Code
Extremal Graphical Modeling with Latent Variables via Convex Optimization Sebastian Engelke, Armeen Taeb
PDF Code
Fair Text Classification via Transferable Representations Thibaud Leteno, Michael Perrot, Charlotte Laclau, Antoine Gourru, Christophe Gravier
PDF Code
Fast Algorithm for Constrained Linear Inverse Problems Mohammed Rayyan Sheriff, Floor Fenne Redel, Peyman Mohajerin Esfahani
PDF Code
Fast Computation of Superquantile-Constrained Optimization Through Implicit Scenario Reduction Jake Roth, Ying Cui
PDF Code
Feature Learning in Finite-Width Bayesian Deep Linear Networks with Multiple Outputs and Convolutional Layers Federico Bassetti, Marco Gherardi, Alessandro Ingrosso, Mauro Pastore, Pietro Rotondo
PDF
Fine-Grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems Michal Dereziński, Daniel LeJeune, Deanna Needell, Elizaveta Rebrova
PDF
Fine-Grained Change Point Detection for Topic Modeling with Pitman-Yor Process Feifei Wang, Zimeng Zhao, Ruimin Ye, Xiaoge Gu, Xiaoling Lu
PDF
Finite Expression Method for Solving High-Dimensional Partial Differential Equations Senwei Liang, Haizhao Yang
PDF Code
Four Axiomatic Characterizations of the Integrated Gradients Attribution Method Daniel Lundstrom, Meisam Razaviyayn
PDF
Frequentist Guarantees of Distributed (Non)-Bayesian Inference Bohan Wu, César A. Uribe
PDF
From Sparse to Dense Functional Data in High Dimensions: Revisiting Phase Transitions from a Non-Asymptotic Perspective Shaojun Guo, Dong Li, Xinghao Qiao, Yizhu Wang
PDF
Frontiers to the Learning of Nonparametric Hidden Markov Models Kweku Abraham, Elisabeth Gassiat, Zacharie Naulet
PDF
Fundamental Limits of Membership Inference Attacks on Machine Learning Models Eric Aubinais, Elisabeth Gassiat, Pablo Piantanida
PDF
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions Kuo-Wei Lai, Vidya Muthukumar
PDF
Generalized Multi-View Model: Adaptive Density Estimation Under Low-Rank Constraints Julien Chhor, Olga Klopp, Alexandre B. Tsybakov
PDF Code
Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints Kazumi Kasaura
PDF Code
Generative Adversarial Networks: Dynamics Matias G. Delgadino, Bruno B. Suassuna, Rene Cabrera
PDF
Geometry and Stability of Supervised Learning Problems Facundo Mémoli, Brantley Vose, Robert C. Williamson
PDF
Gold-Medalist Performance in Solving Olympiad Geometry with AlphaGeometry2 Yuri Chervonyi, Trieu H. Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang H. Nguyen, Marcelo Menegali, Junehyuk Jung, Junsu Kim, Vikas Verma, Quoc V. Le, Thang Luong
PDF Code
Graph-Accelerated Markov Chain Monte Carlo Using Approximate Samples Leo L. Duan, Anirban Bhattacharya
PDF Code
Hierarchical and Stochastic Crystallization Learning: Geometrically Leveraged Nonparametric Regression with Delaunay Triangulation Jiaqi Gu, Guosheng Yin
PDF
Hierarchical Decision Making Based on Structural Information Principles Xianghua Zeng, Hao Peng, Dingli Su, Angsheng Li
PDF
High-Dimensional L2-Boosting: Rate of Convergence Ye Luo, Martin Spindler, Jannis Kueck
PDF
High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces Shihao Shao, Yikang Li, Zhouchen Lin, Qinghua Cui
PDF Code
Hopfield-Fenchel-Young Networks: A Unified Framework for Associative Memory Retrieval Saul Santos, Vlad Niculae, Daniel McNamee, Andre F.T. Martins
PDF Code
How Good Is Your Laplace Approximation of the Bayesian Posterior? Finite-Sample Computable Error Bounds for a Variety of Useful Divergences Mikolaj J. Kasprzak, Ryan Giordano, Tamara Broderick
PDF Code
Identifiability of Causal Graphs Under Non-Additive Conditionally Parametric Causal Models Juraj Bodik, Valérie Chavez-Demoulin
PDF Code
Implicit vs Unfolded Graph Neural Networks Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, David Wipf
PDF
Imprecise Multi-Armed Bandits: Representing Irreducible Uncertainty as a Zero-Sum Game Vanessa Kosoy
PDF
Improving Graph Neural Networks on Multi-Node Tasks with the Labeling Trick Xiyuan Wang, Pan Li, Muhan Zhang
PDF Code
Inferring Change Points in High-Dimensional Regression via Approximate Message Passing Gabriel Arpino, Xiaoqi Liu, Julia Gontarek, Ramji Venkataramanan
PDF Code
Infinite-Dimensional Mahalanobis Distance with Applications to Kernelized Novelty Detection Nikita Zozoulenko, Thomas Cass, Lukas Gonon
PDF Code
Instability, Computational Efficiency and Statistical Accuracy Nhat Ho, Koulik Khamaru, Raaz Dwivedi, Martin J. Wainwright, Michael I. Jordan, Bin Yu
PDF
Integral Probability Metrics Meet Neural Networks: The Radon-Kolmogorov-Smirnov Test Seunghoon Paik, Michael Celentano, Alden Green, Ryan J. Tibshirani
PDF Code
Interpretable Global Minima of Deep ReLU Neural Networks on Sequentially Separable Data Thomas Chen, Patrícia Muñoz Ewald
PDF
Invariant Subspace Decomposition Margherita Lazzaretto, Jonas Peters, Niklas Pfister
PDF Code
Jackpot: Approximating Uncertainty Domains with Adversarial Manifolds Nathanaël Munier, Emmanuel Soubies, Pierre Weiss
PDF Code
Laplace Meets Moreau: Smooth Approximation to Infimal Convolutions Using Laplace's Method Ryan J. Tibshirani, Samy Wu Fung, Howard Heaton, Stanley Osher
PDF Code
Last-Iterate Convergence of Shuffling Momentum Gradient Method Under the Kurdyka-Lojasiewicz Inequality Yuqing Liang, Dongpo Xu
PDF
Latent Process Models for Functional Network Data Peter W. MacDonald, Elizaveta Levina, Ji Zhu
PDF Code
Learning Causal Graphs via Nonlinear Sufficient Dimension Reduction Eftychia Solea, Bing Li, Kyongwon Kim
PDF
Learning Conditional Distributions on Continuous Spaces Cyril Benezet, Ziteng Cheng, Sebastian Jaimungal
PDF Code
Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness Ye Tian, Yuqi Gu, Yang Feng
PDF Code
Learning Global Nash Equilibrium in Team Competitive Games with Generalized Fictitious Cross-Play Zelai Xu, Chao Yu, Yancheng Liang, Yi Wu, Yu Wang
PDF
Learning with Linear Function Approximations in Mean-Field Control Erhan Bayraktar, Ali Devran Kara
PDF
Learning-to-Optimize with PAC-Bayesian Guarantees: Theoretical Considerations and Practical Implementation Michael Sucker, Jalal Fadili, Peter Ochs
PDF Code
Lexicographic Lipschitz Bandits: New Algorithms and a Lower Bound Bo Xue, Ji Cheng, Fei Liu, Yimu Wang, Lijun Zhang, Qingfu Zhang
PDF
Linear Cost and Exponentially Convergent Approximation of Gaussian Matérn Processes on Intervals David Bolin, Vaibhav Mehandiratta, Alexandre B. Simas
PDF Code
Linear Hypothesis Testing in High-Dimensional Expected Shortfall Regression with Heavy-Tailed Errors Gaoyu Wu, Jelena Bradic, Kean Ming Tan, Wen-Xin Zhou
PDF
Linear Separation Capacity of Self-Supervised Representation Learning Shulei Wang
PDF
Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang, Zhiwei Bai
PDF
Locally Private Causal Inference for Randomized Experiments Yuki Ohnishi, Jordan Awan
PDF
Losing Momentum in Continuous-Time Stochastic Optimisation Kexin Jin, Jonas Latz, Chenguang Liu, Alessandro Scagliotti
PDF
Manifold Fitting Under Unbounded Noise Zhigang Yao, Yuqing Xia
PDF
Maximum Causal Entropy IRL in Mean-Field Games and GNEP Framework for Forward RL Berkay Anahtarci, Can Deha Kariksiz, Naci Saldi
PDF
Mean Aggregator Is More Robust than Robust Aggregators Under Label Poisoning Attacks on Distributed Heterogeneous Data Jie Peng, Weiyu Li, Stefan Vlaski, Qing Ling
PDF Code
Memory Gym: Towards Endless Tasks to Benchmark Memory Capabilities of Agents Marco Pleines, Matthias Pallasch, Frank Zimmer, Mike Preuss
PDF Code
Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary Tianyang Hu, Ruiqi Liu, Zuofeng Shang, Guang Cheng
PDF
Minimax Optimal Two-Sample Testing Under Local Differential Privacy Jongmin Mun, Seungwoo Kwak, Ilmun Kim
PDF Code
Mixtures of Gaussian Process Experts with SMC^2 Teemu Härkönen, Sara Wade, Kody Law, Lassi Roininen
PDF Code
Model-Free Change-Point Detection Using AUC of a Classifier Rohit Kanrar, Feiyu Jiang, Zhanrui Cai
PDF Code
Modelling Populations of Interaction Networks via Distance Metrics George Bolt, Simón Lunagómez, Christopher Nemeth
PDF
Multiple Instance Verification Xin Xu, Eibe Frank, Geoffrey Holmes
PDF Code
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles Lesi Chen, Yaohua Ma, Jingzhao Zhang
PDF
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning Kuangyu Ding, Jingyang Li, Kim-Chuan Toh
PDF
Nonparametric Regression on Random Geometric Graphs Sampled from Submanifolds Paul Rosa, Judith Rousseau
PDF
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations Antoine Godichon-Baggioni, Nicklas Werge
PDF
On Consistent Bayesian Inference from Synthetic Data Ossi Räisä, Joonas Jälkö, Antti Honkela
PDF Code
On Global and Local Convergence of Iterative Linear Quadratic Optimization Algorithms for Discrete Time Nonlinear Control Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel, Zaid Harchaoui
PDF Code
On Inference for the Support Vector Machine Jakub Rybak, Heather Battey, Wen-Xin Zhou
PDF
On Model Identification and Out-of-Sample Prediction of PCR with Applications to Synthetic Controls Anish Agarwal, Devavrat Shah, Dennis Shen
PDF Code
On Non-Asymptotic Theory of Recurrent Neural Networks in Temporal Point Processes Zhiheng Chen, Guanhua Fang, Wen Yu
PDF
On Probabilistic Embeddings in Optimal Dimension Reduction Ryan Murray, Adam Pickarski
PDF
On the Ability of Deep Networks to Learn Symmetries from Data: A Neural Kernel Theory Andrea Perin, Stephane Deny
PDF Code
On the Approximation of Kernel Functions Paul Dommel, Alois Pichler
PDF
On the Convergence of Projected Policy Gradient for Any Constant Step Sizes Jiacai Liu, Wenye Li, Dachao Lin, Ke Wei, Zhihua Zhang
PDF
On the Natural Gradient of the Evidence Lower Bound Nihat Ay, Jesse van Oostrum, Adwait Datar
PDF Code
On the O(sqrt(d)/T^(1/4)) Convergence Rate of RMSProp and Its Momentum Extension Measured by L_1 Norm Huan Li, Yiming Dong, Zhouchen Lin
PDF Code
On the Representation of Pairwise Causal Background Knowledge and Its Applications in Causal Inference Zhuangyan Fang, Ruiqi Zhao, Yue Liu, Yangbo He
PDF
On the Robustness of Kernel Goodness-of-Fit Tests Xing Liu, François-Xavier Briol
PDF Code
On the Statistical Properties of Generative Adversarial Models for Low Intrinsic Data Dimension Saptarshi Chakraborty, Peter L. Bartlett
PDF
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient Descent Rahul Singh, Abhinek Shukla, Dootika Vats
PDF Code
Online Quantile Regression Yinan Shen, Dong Xia, Wen-Xin Zhou
PDF
Operator Learning for Hyperbolic PDEs Christopher Wang, Alex Townsend
PDF Code
Optimal and Efficient Algorithms for Decentralized Online Convex Optimization Yuanyu Wan, Tong Wei, Bo Xue, Mingli Song, Lijun Zhang
PDF
Optimal Complexity in Byzantine-Robust Distributed Stochastic Optimization with Data Heterogeneity Qiankun Shi, Jie Peng, Kun Yuan, Xiao Wang, Qing Ling
PDF
Optimal Experiment Design for Causal Effect Identification Sina Akbari, Jalal Etesami, Negar Kiyavash
PDF Code
Optimal Rates of Kernel Ridge Regression Under Source Condition in Large Dimensions Haobo Zhang, Yicheng Li, Weihao Lu, Qian Lin
PDF
Optimal Sample Selection Through Uncertainty Estimation and Its Application in Deep Learning Yong Lin, Chen Liu, Chenlu Ye, Qing Lian, Yuan Yao, Tong Zhang
PDF Code
Optimal Subsampling for High-Dimensional Partially Linear Models via Machine Learning Methods Yujing Shao, Lei Wang, Heng Lian, Haiying Wang
PDF
Optimization over a Probability Simplex James Chok, Geoffrey M. Vasil
PDF Code
Optimizing Data Collection for Machine Learning Rafid Mahmood, James Lucas, Jose M. Alvarez, Sanja Fidler, Marc T. Law
PDF
Optimizing Return Distributions with Distributional Dynamic Programming Bernardo Ávila Pires, Mark Rowland, Diana Borsa, Zhaohan Daniel Guo, Khimya Khetarpal, André Barreto, David Abel, Rémi Munos, Will Dabney
PDF
Orthogonal Bases for Equivariant Graph Learning with Provable K-WL Expressive Power Jia He, Maggie Cheng
PDF
Outlier Robust and Sparse Estimation of Linear Regression Coefficients Takeyuki Sasai, Hironori Fujisawa
PDF
Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical Analysis via Efficient-KAN and WAV-KAN Subhajit Patra, Sonali Panda, Bikram Keshari Parida, Mahima Arya, Kurt Jacobs, Denys I. Bondar, Abhijit Sen
PDF Code
Physics-Informed Kernel Learning Nathan Doumèche, Francis Bach, Gérard Biau, Claire Boyer
PDF Code
Piecewise Deterministic Sampling with Splitting Schemes Andrea Bertazzi, Paul Dobson, Pierre Monmarché
PDF Code
Posterior and Variational Inference for Deep Neural Networks with Heavy-Tailed Weights Paul Egels, Ismaël Castillo
PDF
Posterior Concentrations of Fully-Connected Bayesian Neural Networks with General Priors on the Weights Insung Kong, Yongdai Kim
PDF
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers Fan Yang, Hongyang R. Zhang, Sen Wu, Christopher Re, Weijie J. Su
PDF Code
PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks Xiyue Zhang, Benjie Wang, Marta Kwiatkowska, Huan Zhang
PDF
Principled Penalty-Based Methods for Bilevel Reinforcement Learning and RLHF Han Shen, Zhuoran Yang, Tianyi Chen
PDF
Prominent Roles of Conditionally Invariant Components in Domain Adaptation: Theory and Algorithms Keru Wu, Yuansi Chen, Wooseok Ha, Bin Yu
PDF Code
Quantifying the Effectiveness of Linear Preconditioning in Markov Chain Monte Carlo Max Hird, Samuel Livingstone
PDF
Random Pruning Over-Parameterized Neural Networks Can Improve Generalization: A Training Dynamics Analysis Hongru Yang, Yingbin Liang, Xiaojie Guo, Lingfei Wu, Zhangyang Wang
PDF
Random ReLU Neural Networks as Non-Gaussian Processes Rahul Parhi, Pakshal Bohra, Ayoub El Biari, Mehrsa Pourya, Michael Unser
PDF
Randomization Can Reduce Both Bias and Variance: A Case Study in Random Forests Brian Liu, Rahul Mazumder
PDF
Randomly Projected Convex Clustering Model: Motivation, Realization, and Cluster Recovery Guarantees Ziwen Wang, Yancheng Yuan, Jiaming Ma, Tieyong Zeng, Defeng Sun
PDF
Rank-One Convexification for Sparse Regression Alper Atamturk, Andres Gomez
PDF
Recursive Causal Discovery Ehsan Mokhtarian, Sepehr Elahi, Sina Akbari, Negar Kiyavash
PDF Code
Regularized Rényi Divergence Minimization Through Bregman Proximal Gradient Algorithms Thomas Guilmeau, Emilie Chouzenoux, Víctor Elvira
PDF
Regularizing Hard Examples Improves Adversarial Robustness Hyungyu Lee, Saehyung Lee, Ho Bae, Sungroh Yoon
PDF
Reinforcement Learning for Infinite-Dimensional Systems Wei Zhang, Jr-Shin Li
PDF
Relaxed Gaussian Process Interpolation: A Goal-Oriented Approach to Bayesian Optimization Sébastien J. Petit, Julien Bect, Emmanuel Vazquez
PDF Code
Reliever: Relieving the Burden of Costly Model Fits for Changepoint Detection Chengde Qian, Guanghui Wang, Changliang Zou
PDF
Revisiting Gradient Normalization and Clipping for Nonconvex SGD Under Heavy-Tailed Noise: Necessity, Sufficiency, and Acceleration Tao Sun, Xinwang Liu, Kun Yuan
PDF
Riemannian Bilevel Optimization Jiaxiang Li, Shiqian Ma
PDF Code
Robust Point Matching with Distance Profiles YoonHaeng Hur, Yuehaw Khoo
PDF
Sample Complexity of the Linear Quadratic Regulator: A Reinforcement Learning Lens Amirreza Neshaei Moghaddam, Alex Olshevsky, Bahman Gharesifard
PDF
Sampling and Estimation on Manifolds Using the Langevin Diffusion Karthik Bharath, Alexander Lewis, Akash Sharma, Michael V. Tretyakov
PDF
Scalable and Adaptive Variational Bayes Methods for Hawkes Processes Deborah Sulem, Vincent Rivoirard, Judith Rousseau
PDF
Scaling Capability in Token Space: An Analysis of Large Vision Language Model Tenghui Li, Guoxu Zhou, Xuyang Zhao, Qibin Zhao
PDF
Scaling Data-Constrained Language Models Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, Colin Raffel
PDF Code
Scaling ResNets in the Large-Depth Regime Pierre Marion, Adeline Fermanian, Gérard Biau, Jean-Philippe Vert
PDF Code
Score-Aware Policy-Gradient and Performance Guarantees Using Local Lyapunov Stability Céline Comte, Matthieu Jonckheere, Jaron Sanders, Albert Senen-Cerda
PDF Code
Score-Based Causal Representation Learning: Linear and General Transformations Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, Ali Tajer
PDF Code
Score-Based Diffusion Models in Function Space Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzadenesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal, Arash Vahdat, Anima Anandkumar
PDF Code
Selective Inference with Distributed Data Sifan Liu, Snigdha Panigrahi
PDF Code
Sharp Bounds for Sequential Federated Learning on Heterogeneous Data Yipeng Li, Xinchen Lyu
PDF Code
Simplex Constrained Sparse Optimization via Tail Screening Peng Chen, Jin Zhu, Junxian Zhu, Xueqin Wang
PDF Code
Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds Clément Bonet, Lucas Drumetz, Nicolas Courty
PDF Code
Sparse Semiparametric Discriminant Analysis for High-Dimensional Zero-Inflated Data Hee Cheol Chung, Yang Ni, Irina Gaynanova
PDF Code
Sparse SVM with Hard-Margin Loss: A Newton-Augmented Lagrangian Method in Reduced Dimensions Penghe Zhang, Naihua Xiu, Hou-Duo Qi
PDF
Stabilizing Sharpness-Aware Minimization Through a Simple Renormalization Strategy Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, Yunda Hao
PDF
Stable Learning Using Spiking Neural Networks Equipped with Affine Encoders and Decoders A. Martina Neuman, Dominik Dold, Philipp Christian Petersen
PDF Code
Statistical Field Theory for Markov Decision Processes Under Uncertainty George Stamatescu
PDF
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming Sen Na, Michael Mahoney
PDF
Statistical Inference of Random Graphs with a Surrogate Likelihood Function Dingbo Wu, Fangzheng Xie
PDF Code
Stochastic Interior-Point Methods for Smooth Conic Optimization with Applications Chuan He, Zhanwang Deng
PDF Code
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions Michael Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden
PDF
Supervised Learning with Evolving Tasks and Performance Guarantees Verónica Álvarez, Santiago Mazuelas, Jose A. Lozano
PDF Code
System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning Matteo Bettini, Ajay Shankar, Amanda Prorok
PDF Code
Test-Time Training on Video Streams Renhao Wang, Yu Sun, Arnuv Tandon, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang
PDF Code
The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond Jiin Woo, Gauri Joshi, Yuejie Chi
PDF
The Effect of SGD Batch Size on Autoencoder Learning: Sparsity, Sharpness, and Feature Learning Nikhil Ghosh, Spencer Frei, Wooseok Ha, Bin Yu
PDF
The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise Shuze Daniel Liu, Shuhang Chen, Shangtong Zhang
PDF
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification Brendon G. Anderson, Ziye Ma, Jingqi Li, Somayeh Sojoudi
PDF
Towards Understanding Gradient Flow Dynamics of Homogeneous Neural Networks Beyond the Origin Akshay Kumar, Jarvis Haupt
PDF Code
Towards Unified Native Spaces in Kernel Methods Xavier Emery, Emilio Porcu, Moreno Bevilacqua
PDF
Transformers from Diffusion: A Unified Framework for Neural Message Passing Qitian Wu, David Wipf, Junchi Yan
PDF Code
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization Tianyi Lin, Chi Jin, Michael I. Jordan
PDF
Unbalanced Kantorovich-Rubinstein Distance, Plan, and Barycenter on Nite Spaces: A Statistical Perspective Shayan Hundrieser, Florian Heinemann, Marcel Klatt, Marina Struleva, Axel Munk
PDF
Understanding Deep Representation Learning via Layerwise Feature Compression and Discrimination Peng Wang, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, Qing Qu
PDF Code
Unified Discrete Diffusion for Categorical Data Lingxiao Zhao, Xueying Ding, Lijun Yu, Leman Akoglu
PDF Code
Universal Online Convex Optimization Meets Second-Order Bounds Lijun Zhang, Yibo Wang, Guanghui Wang, Jinfeng Yi, Tianbao Yang
PDF
Universality of Kernel Random Matrices and Kernel Regression in the Quadratic Regime Parthe Pandit, Zhichao Wang, Yizhe Zhu
PDF
Uplift Model Evaluation with Ordinal Dominance Graphs Brecht Verbeken, Marie-Anne Guerry, Wouter Verbeke, Sam Verboven
PDF
Variance-Aware Estimation of Kernel Mean Embedding Geoffrey Wolfer, Pierre Alquier
PDF
Variational Inference for Uncertainty Quantification: An Analysis of Trade-Offs Charles C. Margossian, Loucas Pillaud-Vivien, Lawrence K. Saul
PDF Code
VFOSA: Variance-Reduced Fast Operator Splitting Algorithms for Generalized Equations Quoc Tran-Dinh
PDF
Wasserstein Convergence Guarantees for a General Class of Score-Based Generative Models Xuefeng Gao, Hoang M. Nguyen, Lingjiong Zhu
PDF
Wasserstein F-Tests for Frechet Regression on Bures-Wasserstein Manifolds Haoshu Xu, Hongzhe Li
PDF