JMLR 2025
258 papers
(De)-Regularized Maximum Mean Discrepancy Gradient Flow
Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Anna Korba, Arthur Gretton, Bharath K. Sriperumbudur A Comparative Evaluation of Quantification Methods
Tobias Schumacher, Markus Strohmaier, Florian Lemmerich Actor-Critic Learning for Mean-Field Control in Continuous Time
Noufel Frikha, Maximilien Germain, Mathieu Lauriere, Huyen Pham, Xuanye Song Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao, Lingxiao Wang, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Chaochao Chen, Mladen Kolar Assumption-Lean and Data-Adaptive Post-Prediction Inference
Jiacheng Miao, Xinran Miao, Yixuan Wu, Jiwei Zhao, Qiongshi Lu Autoencoders in Function Space
Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, T. J. Sullivan BitNet: 1-Bit Pre-Training for Large Language Models
Hongyu Wang, Shuming Ma, Lingxiao Ma, Lei Wang, Wenhui Wang, Li Dong, Shaohan Huang, Huaijie Wang, Jilong Xue, Ruiping Wang, Yi Wu, Furu Wei Boosting Causal Additive Models
Maximilian Kertel, Nadja Klein Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability
Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang, Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, Thomas Icard Causal Effect of Functional Treatment
Ruoxu Tan, Wei Huang, Zheng Zhang, Guosheng Yin ClimSim-Online: A Large Multi-Scale Dataset and Framework for Hybrid Physics-ML Climate Emulation
Sungduk Yu, Zeyuan Hu, Akshay Subramaniam, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus C. Will, Gunnar Behrens, Julius J. M. Busecke, Nora Loose, Charles I Stern, Tom Beucler, Bryce Harrop, Helge Heuer, Benjamin R Hillman, Andrea Jenney, Nana Liu, Alistair White, Tian Zheng, Zhiming Kuang, Fiaz Ahmed, Elizabeth Barnes, Noah D. Brenowitz, Christopher Bretherton, Veronika Eyring, Savannah Ferretti, Nicholas Lutsko, Pierre Gentine, Stephan Mandt, J. David Neelin, Rose Yu, Laure Zanna, Nathan M. Urban, Janni Yuval, Ryan Abernathey, Pierre Baldi, Wayne Chuang, Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Po-Lun Ma, Sara Shamekh, Guang Zhang, Michael Pritchard Collaborative Likelihood-Ratio Estimation over Graphs
Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos Composite Goodness-of-Fit Tests with Kernels
Oscar Key, Arthur Gretton, François-Xavier Briol, Tamara Fernandez Contextual Bandits with Stage-Wise Constraints
Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett Curvature-Based Clustering on Graphs
Yu Tian, Zachary Lubberts, Melanie Weber Deletion Robust Non-Monotone Submodular Maximization over Matroids
Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Morteza Zadimoghaddam Density Estimation Using the Perceptron
Patrik Róbert Gerber, Tianze Jiang, Yury Polyanskiy, Rui Sun Differentially Private Multivariate Medians
Kelly Ramsay, Aukosh Jagannath, Shoja'eddin Chenouri DRM Revisited: A Complete Error Analysis
Yuling Jiao, Ruoxuan Li, Peiying Wu, Jerry Zhijian Yang, Pingwen Zhang Efficiently Escaping Saddle Points in Bilevel Optimization
Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, Lifeng Lai Enhancing Graph Representation Learning with Localized Topological Features
Zuoyu Yan, Qi Zhao, Ze Ye, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, Chao Chen Fair Text Classification via Transferable Representations
Thibaud Leteno, Michael Perrot, Charlotte Laclau, Antoine Gourru, Christophe Gravier Fast Algorithm for Constrained Linear Inverse Problems
Mohammed Rayyan Sheriff, Floor Fenne Redel, Peyman Mohajerin Esfahani Generative Adversarial Networks: Dynamics
Matias G. Delgadino, Bruno B. Suassuna, Rene Cabrera Gold-Medalist Performance in Solving Olympiad Geometry with AlphaGeometry2
Yuri Chervonyi, Trieu H. Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang H. Nguyen, Marcelo Menegali, Junehyuk Jung, Junsu Kim, Vikas Verma, Quoc V. Le, Thang Luong Implicit vs Unfolded Graph Neural Networks
Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, David Wipf Instability, Computational Efficiency and Statistical Accuracy
Nhat Ho, Koulik Khamaru, Raaz Dwivedi, Martin J. Wainwright, Michael I. Jordan, Bin Yu Invariant Subspace Decomposition
Margherita Lazzaretto, Jonas Peters, Niklas Pfister Losing Momentum in Continuous-Time Stochastic Optimisation
Kexin Jin, Jonas Latz, Chenguang Liu, Alessandro Scagliotti Mixtures of Gaussian Process Experts with SMC^2
Teemu Härkönen, Sara Wade, Kody Law, Lassi Roininen Multiple Instance Verification
Xin Xu, Eibe Frank, Geoffrey Holmes Online Quantile Regression
Yinan Shen, Dong Xia, Wen-Xin Zhou Optimizing Data Collection for Machine Learning
Rafid Mahmood, James Lucas, Jose M. Alvarez, Sanja Fidler, Marc T. Law Optimizing Return Distributions with Distributional Dynamic Programming
Bernardo Ávila Pires, Mark Rowland, Diana Borsa, Zhaohan Daniel Guo, Khimya Khetarpal, André Barreto, David Abel, Rémi Munos, Will Dabney Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical Analysis via Efficient-KAN and WAV-KAN
Subhajit Patra, Sonali Panda, Bikram Keshari Parida, Mahima Arya, Kurt Jacobs, Denys I. Bondar, Abhijit Sen Physics-Informed Kernel Learning
Nathan Doumèche, Francis Bach, Gérard Biau, Claire Boyer Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi, Pakshal Bohra, Ayoub El Biari, Mehrsa Pourya, Michael Unser Recursive Causal Discovery
Ehsan Mokhtarian, Sepehr Elahi, Sina Akbari, Negar Kiyavash Sampling and Estimation on Manifolds Using the Langevin Diffusion
Karthik Bharath, Alexander Lewis, Akash Sharma, Michael V. Tretyakov Scaling Data-Constrained Language Models
Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, Colin Raffel Scaling ResNets in the Large-Depth Regime
Pierre Marion, Adeline Fermanian, Gérard Biau, Jean-Philippe Vert Score-Based Causal Representation Learning: Linear and General Transformations
Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, Ali Tajer Score-Based Diffusion Models in Function Space
Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzadenesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal, Arash Vahdat, Anima Anandkumar Test-Time Training on Video Streams
Renhao Wang, Yu Sun, Arnuv Tandon, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang Unified Discrete Diffusion for Categorical Data
Lingxiao Zhao, Xueying Ding, Lijun Yu, Leman Akoglu Universal Online Convex Optimization Meets Second-Order Bounds
Lijun Zhang, Yibo Wang, Guanghui Wang, Jinfeng Yi, Tianbao Yang Uplift Model Evaluation with Ordinal Dominance Graphs
Brecht Verbeken, Marie-Anne Guerry, Wouter Verbeke, Sam Verboven