Attentional Multilabel Learning over Graphs: A Message Passing Approach

Abstract

We address a largely open problem of multilabel classification over graphs. Unlike traditional vector input, a graph has rich variable-size substructures which are related to the labels in some ways. We believe that uncovering these relations might hold the key to classification performance and explainability. We introduce Graph Attention model for Multi-Label learning (GAML\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\text {GAML}$\end{document}), a novel graph neural network that can handle this problem effectively. GAML\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\text {GAML}$\end{document} regards labels as auxiliary nodes and models them in conjunction with the input graph. By applying the neural message passing algorithm and attention mechanism to both the label nodes and the input nodes iteratively, GAML\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\text {GAML}$\end{document} can capture the relations between the labels and the input subgraphs at various resolution scales. Moreover, our model can take advantage of explicit label dependencies. It also scales linearly with the number of labels and graph size thanks to our proposed hierarchical attention. We evaluate GAML\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\text {GAML}$\end{document} on an extensive set of experiments with both graph-structured inputs and classical unstructured inputs. The results show that GAML\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\text {GAML}$\end{document} significantly outperforms other competing methods. Importantly, GAML\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\text {GAML}$\end{document} enables intuitive visualizations for better understanding of the label-substructure relations and explanation of the model behaviors.

Cite

Text

Do et al. "Attentional Multilabel Learning over Graphs: A Message Passing Approach." Machine Learning, 2019. doi:10.1007/S10994-019-05782-6

Markdown

[Do et al. "Attentional Multilabel Learning over Graphs: A Message Passing Approach." Machine Learning, 2019.](https://mlanthology.org/mlj/2019/do2019mlj-attentional/) doi:10.1007/S10994-019-05782-6

BibTeX

@article{do2019mlj-attentional,
  title     = {{Attentional Multilabel Learning over Graphs: A Message Passing Approach}},
  author    = {Do, Kien and Tran, Truyen and Nguyen, Thin and Venkatesh, Svetha},
  journal   = {Machine Learning},
  year      = {2019},
  pages     = {1757-1781},
  doi       = {10.1007/S10994-019-05782-6},
  volume    = {108},
  url       = {https://mlanthology.org/mlj/2019/do2019mlj-attentional/}
}