Data Driven Conditional Optimal Transport
Abstract
A data-driven procedure is developed to compute the optimal map between two conditional probabilities ρ(x|z1,…,zL)\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\rho (x|z_{1},\ldots ,z_{L})$\end{document} and μ(y|z1,…,zL)\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\mu (y|z_{1},\ldots ,z_{L})$\end{document}, known only through samples and depending on a set of covariates zl\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$z_{l}$\end{document}. The procedure is tested on synthetic data from the ACIC Data Analysis Challenge 2017 and it is applied to non-uniform lightness transfer between images. Exactly solvable examples and simulations are performed to highlight the differences with ordinary optimal transport.
Cite
Text
Tabak et al. "Data Driven Conditional Optimal Transport." Machine Learning, 2021. doi:10.1007/S10994-021-06060-0Markdown
[Tabak et al. "Data Driven Conditional Optimal Transport." Machine Learning, 2021.](https://mlanthology.org/mlj/2021/tabak2021mlj-data/) doi:10.1007/S10994-021-06060-0BibTeX
@article{tabak2021mlj-data,
title = {{Data Driven Conditional Optimal Transport}},
author = {Tabak, Esteban G. and Trigila, Giulio and Zhao, Wenjun},
journal = {Machine Learning},
year = {2021},
pages = {3135-3155},
doi = {10.1007/S10994-021-06060-0},
volume = {110},
url = {https://mlanthology.org/mlj/2021/tabak2021mlj-data/}
}