Physics-Informed Variational Autoencoders for Improved Robustness to Environmental Factors of Variation

Abstract

The combination of machine learning models with physical models is a recent research path to learn robust data representations. In this paper, we introduce p3\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\hbox {p}^3$\end{document}VAE, a variational autoencoder that integrates prior physical knowledge modeling the generative latent factors of variation that are related to the data acquisition conditions. p3\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\hbox {p}^3$\end{document}VAE combines standard neural network layers with non-trainable physics layers in order to partially ground the latent space to physical variables. In order to fully leverage our physics-informed machine learning model, we introduce a semi-supervised learning algorithm that strikes a balance between the machine learning part and the physics part. Experiments on simulated and real data sets demonstrate the benefits of our framework against competing physics-informed and conventional machine learning models, in terms of extrapolation capabilities and interpretability. In particular, we show that p3\documentclass[12pt]minimal \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}-69pt \begin{document}$\hbox {p}^3$\end{document}VAE naturally has interesting disentanglement capabilities. Our code and data have been made publicly available at https://github.com/Romain3Ch216/p3VAE.

Cite

Text

Thoreau et al. "Physics-Informed Variational Autoencoders for Improved Robustness to Environmental Factors of Variation." Machine Learning, 2025. doi:10.1007/S10994-025-06829-7

Markdown

[Thoreau et al. "Physics-Informed Variational Autoencoders for Improved Robustness to Environmental Factors of Variation." Machine Learning, 2025.](https://mlanthology.org/mlj/2025/thoreau2025mlj-physicsinformed/) doi:10.1007/S10994-025-06829-7

BibTeX

@article{thoreau2025mlj-physicsinformed,
  title     = {{Physics-Informed Variational Autoencoders for Improved Robustness to Environmental Factors of Variation}},
  author    = {Thoreau, Romain and Risser, Laurent and Achard, Véronique and Berthelot, Béatrice and Briottet, Xavier},
  journal   = {Machine Learning},
  year      = {2025},
  pages     = {198},
  doi       = {10.1007/S10994-025-06829-7},
  volume    = {114},
  url       = {https://mlanthology.org/mlj/2025/thoreau2025mlj-physicsinformed/}
}