Shattering All Sets of K Points in 'General Position' Requires (k - 1)/2 Parameters
Abstract
For classes of concepts defined by certain classes of analytic functions depending on n parameters, there are nonempty open sets of samples of length 2n + 2 that cannot be shattered. A slighly weaker result is also proved for piecewise-analytic functions. The special case of neural networks is discussed.
Cite
Text
Sontag. "Shattering All Sets of K Points in 'General Position' Requires (k - 1)/2 Parameters." Neural Computation, 1997. doi:10.1162/NECO.1997.9.2.337Markdown
[Sontag. "Shattering All Sets of K Points in 'General Position' Requires (k - 1)/2 Parameters." Neural Computation, 1997.](https://mlanthology.org/neco/1997/sontag1997neco-shattering/) doi:10.1162/NECO.1997.9.2.337BibTeX
@article{sontag1997neco-shattering,
title = {{Shattering All Sets of K Points in 'General Position' Requires (k - 1)/2 Parameters}},
author = {Sontag, Eduardo D.},
journal = {Neural Computation},
year = {1997},
pages = {337-348},
doi = {10.1162/NECO.1997.9.2.337},
volume = {9},
url = {https://mlanthology.org/neco/1997/sontag1997neco-shattering/}
}