Multidimensional Scaling and Data Clustering

Abstract

Visualizing and structuring pairwise dissimilarity data are difficult combinatorial op(cid:173) timization problems known as multidimensional scaling or pairwise data clustering. Algorithms for embedding dissimilarity data set in a Euclidian space, for clustering these data and for actively selecting data to support the clustering process are discussed in the maximum entropy framework. Active data selection provides a strategy to discover structure in a data set efficiently with partially unknown data.

Cite

Text

Hofmann and Buhmann. "Multidimensional Scaling and Data Clustering." Neural Information Processing Systems, 1994.

Markdown

[Hofmann and Buhmann. "Multidimensional Scaling and Data Clustering." Neural Information Processing Systems, 1994.](https://mlanthology.org/neurips/1994/hofmann1994neurips-multidimensional/)

BibTeX

@inproceedings{hofmann1994neurips-multidimensional,
  title     = {{Multidimensional Scaling and Data Clustering}},
  author    = {Hofmann, Thomas and Buhmann, Joachim},
  booktitle = {Neural Information Processing Systems},
  year      = {1994},
  pages     = {459-466},
  url       = {https://mlanthology.org/neurips/1994/hofmann1994neurips-multidimensional/}
}