Analytical Study of the Interplay Between Architecture and Predictability
Abstract
We study model feed forward networks as time series predictors in the stationary limit. The focus is on complex, yet non-chaotic, behavior. The main question we address is whether the asymptotic behavior is governed by the architecture, regardless the details of the weights . We find hierarchies among classes of architectures with respect to the attract or dimension of the long term sequence they are capable of generating; larger number of hidden units can generate higher dimensional attractors. In the case of a perceptron, we develop the stationary solution for general weights, and show that the flow is typically one dimensional. The relaxation time from an arbitrary initial condition to the stationary solution is found to scale linearly with the size of the network. In multilayer networks, the number of hidden units gives bounds on the number and dimension of the possible attractors. We conclude that long term prediction (in the non-chaotic regime) with such models is governed by attractor dynamics related to the architecture.
Cite
Text
Priel et al. "Analytical Study of the Interplay Between Architecture and Predictability." Neural Information Processing Systems, 1997.Markdown
[Priel et al. "Analytical Study of the Interplay Between Architecture and Predictability." Neural Information Processing Systems, 1997.](https://mlanthology.org/neurips/1997/priel1997neurips-analytical/)BibTeX
@inproceedings{priel1997neurips-analytical,
title = {{Analytical Study of the Interplay Between Architecture and Predictability}},
author = {Priel, Avner and Kanter, Ido and Kessler, David A.},
booktitle = {Neural Information Processing Systems},
year = {1997},
pages = {315-321},
url = {https://mlanthology.org/neurips/1997/priel1997neurips-analytical/}
}