VIBES: A Variational Inference Engine for Bayesian Networks

Abstract

In recent years variational methods have become a popular tool for approximate inference and learning in a wide variety of proba- bilistic models. For each new application, however, it is currently necessary (cid:12)rst to derive the variational update equations, and then to implement them in application-speci(cid:12)c code. Each of these steps is both time consuming and error prone. In this paper we describe a general purpose inference engine called VIBES (‘Variational Infer- ence for Bayesian Networks’) which allows a wide variety of proba- bilistic models to be implemented and solved variationally without recourse to coding. New models are speci(cid:12)ed either through a simple script or via a graphical interface analogous to a drawing package. VIBES then automatically generates and solves the vari- ational equations. We illustrate the power and (cid:13)exibility of VIBES using examples from Bayesian mixture modelling.

Cite

Text

Bishop et al. "VIBES: A Variational Inference Engine for Bayesian Networks." Neural Information Processing Systems, 2002.

Markdown

[Bishop et al. "VIBES: A Variational Inference Engine for Bayesian Networks." Neural Information Processing Systems, 2002.](https://mlanthology.org/neurips/2002/bishop2002neurips-vibes/)

BibTeX

@inproceedings{bishop2002neurips-vibes,
  title     = {{VIBES: A Variational Inference Engine for Bayesian Networks}},
  author    = {Bishop, Christopher M. and Spiegelhalter, David and Winn, John},
  booktitle = {Neural Information Processing Systems},
  year      = {2002},
  pages     = {793-800},
  url       = {https://mlanthology.org/neurips/2002/bishop2002neurips-vibes/}
}