A Probabilistic Approach to Single Channel Blind Signal Separation
Abstract
We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of basis filters in time domain that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis filters. For each time point we infer the source signals and their contribution factors. This inference is possible due to the prior knowledge of the basis filters and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation and our experimental results exhibit a high level of separation performance for mixtures of two music signals as well as the separation of two voice signals.
Cite
Text
Jang and Lee. "A Probabilistic Approach to Single Channel Blind Signal Separation." Neural Information Processing Systems, 2002.Markdown
[Jang and Lee. "A Probabilistic Approach to Single Channel Blind Signal Separation." Neural Information Processing Systems, 2002.](https://mlanthology.org/neurips/2002/jang2002neurips-probabilistic/)BibTeX
@inproceedings{jang2002neurips-probabilistic,
title = {{A Probabilistic Approach to Single Channel Blind Signal Separation}},
author = {Jang, Gil-jin and Lee, Te-Won},
booktitle = {Neural Information Processing Systems},
year = {2002},
pages = {1197-1204},
url = {https://mlanthology.org/neurips/2002/jang2002neurips-probabilistic/}
}