Linear Dependent Dimensionality Reduction

Abstract

We formulate linear dimensionality reduction as a semi-parametric esti- mation problem, enabling us to study its asymptotic behavior. We gen- eralize the problem beyond additive Gaussian noise to (unknown) non- Gaussian additive noise, and to unbiased non-additive models.

Cite

Text

Srebro and Jaakkola. "Linear Dependent Dimensionality Reduction." Neural Information Processing Systems, 2003.

Markdown

[Srebro and Jaakkola. "Linear Dependent Dimensionality Reduction." Neural Information Processing Systems, 2003.](https://mlanthology.org/neurips/2003/srebro2003neurips-linear/)

BibTeX

@inproceedings{srebro2003neurips-linear,
  title     = {{Linear Dependent Dimensionality Reduction}},
  author    = {Srebro, Nathan and Jaakkola, Tommi S.},
  booktitle = {Neural Information Processing Systems},
  year      = {2003},
  pages     = {145-152},
  url       = {https://mlanthology.org/neurips/2003/srebro2003neurips-linear/}
}