Accelerated Variational Dirichlet Process Mixtures

Abstract

Dirichlet Process (DP) mixture models are promising candidates for clustering applications where the number of clusters is unknown a priori. Due to compu- tational considerations these models are unfortunately unsuitable for large scale data-mining applications. We propose a class of deterministic accelerated DP mixture models that can routinely handle millions of data-cases. The speedup is achieved by incorporating kd-trees into a variational Bayesian algorithm for DP mixtures in the stick-breaking representation, similar to that of Blei and Jordan (2005). Our algorithm differs in the use of kd-trees and in the way we handle truncation: we only assume that the variational distributions are fixed at their pri- ors after a certain level. Experiments show that speedups relative to the standard variational algorithm can be significant.

Cite

Text

Kurihara et al. "Accelerated Variational Dirichlet Process Mixtures." Neural Information Processing Systems, 2006.

Markdown

[Kurihara et al. "Accelerated Variational Dirichlet Process Mixtures." Neural Information Processing Systems, 2006.](https://mlanthology.org/neurips/2006/kurihara2006neurips-accelerated/)

BibTeX

@inproceedings{kurihara2006neurips-accelerated,
  title     = {{Accelerated Variational Dirichlet Process Mixtures}},
  author    = {Kurihara, Kenichi and Welling, Max and Vlassis, Nikos},
  booktitle = {Neural Information Processing Systems},
  year      = {2006},
  pages     = {761-768},
  url       = {https://mlanthology.org/neurips/2006/kurihara2006neurips-accelerated/}
}