Estimating Disparity with Confidence from Energy Neurons
Abstract
Binocular fusion takes place over a limited region smaller than one degree of visual angle (Panum's fusional area), which is on the order of the range of preferred disparities measured in populations of disparity-tuned neurons in the visual cortex. However, the actual range of binocular disparities encountered in natural scenes ranges over tens of degrees. This discrepancy suggests that there must be a mechanism for detecting whether the stimulus disparity is either inside or outside of the range of the preferred disparities in the population. Here, we present a statistical framework to derive feature in a population of V1 disparity neuron to determine the stimulus disparity within the preferred disparity range of the neural population. When optimized for natural images, it yields a feature that can be explained by the normalization which is a common model in V1 neurons. We further makes use of the feature to estimate the disparity in natural images. Our proposed model generates more correct estimates than coarse-to-fine multiple scales approaches and it can also identify regions with occlusion. The approach suggests another critical role for normalization in robust disparity estimation.
Cite
Text
Tsang and Shi. "Estimating Disparity with Confidence from Energy Neurons." Neural Information Processing Systems, 2007.Markdown
[Tsang and Shi. "Estimating Disparity with Confidence from Energy Neurons." Neural Information Processing Systems, 2007.](https://mlanthology.org/neurips/2007/tsang2007neurips-estimating/)BibTeX
@inproceedings{tsang2007neurips-estimating,
title = {{Estimating Disparity with Confidence from Energy Neurons}},
author = {Tsang, Eric K. and Shi, Bertram E.},
booktitle = {Neural Information Processing Systems},
year = {2007},
pages = {1537-1544},
url = {https://mlanthology.org/neurips/2007/tsang2007neurips-estimating/}
}