Time-Rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models
Abstract
Recent work on the statistical modeling of neural responses has focused on modulated renewal processes in which the spike rate is a function of the stimulus and recent spiking history. Typically, these models incorporate spike-history dependencies via either: (A) a conditionally-Poisson process with rate dependent on a linear projection of the spike train history (e.g., generalized linear model); or (B) a modulated non-Poisson renewal process (e.g., inhomogeneous gamma process). Here we show that the two approaches can be combined, resulting in a {\it conditional renewal} (CR) model for neural spike trains. This model captures both real and rescaled-time effects, and can be fit by maximum likelihood using a simple application of the time-rescaling theorem [1]. We show that for any modulated renewal process model, the log-likelihood is concave in the linear filter parameters only under certain restrictive conditions on the renewal density (ruling out many popular choices, e.g. gamma with $\kappa \neq1$), suggesting that real-time history effects are easier to estimate than non-Poisson renewal properties. Moreover, we show that goodness-of-fit tests based on the time-rescaling theorem [1] quantify relative-time effects, but do not reliably assess accuracy in spike prediction or stimulus-response modeling. We illustrate the CR model with applications to both real and simulated neural data.
Cite
Text
Pillow. "Time-Rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models." Neural Information Processing Systems, 2009.Markdown
[Pillow. "Time-Rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models." Neural Information Processing Systems, 2009.](https://mlanthology.org/neurips/2009/pillow2009neurips-timerescaling/)BibTeX
@inproceedings{pillow2009neurips-timerescaling,
title = {{Time-Rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models}},
author = {Pillow, Jonathan W.},
booktitle = {Neural Information Processing Systems},
year = {2009},
pages = {1473-1481},
url = {https://mlanthology.org/neurips/2009/pillow2009neurips-timerescaling/}
}