Spectral Regularization for Support Estimation

Abstract

In this paper we consider the problem of learning from data the support of a probability distribution when the distribution {\em does not} have a density (with respect to some reference measure). We propose a new class of regularized spectral estimators based on a new notion of reproducing kernel Hilbert space, which we call {\em ``completely regular''}. Completely regular kernels allow to capture the relevant geometric and topological properties of an arbitrary probability space. In particular, they are the key ingredient to prove the universal consistency of the spectral estimators and in this respect they are the analogue of universal kernels for supervised problems. Numerical experiments show that spectral estimators compare favorably to state of the art machine learning algorithms for density support estimation.

Cite

Text

Vito et al. "Spectral Regularization for Support Estimation." Neural Information Processing Systems, 2010.

Markdown

[Vito et al. "Spectral Regularization for Support Estimation." Neural Information Processing Systems, 2010.](https://mlanthology.org/neurips/2010/vito2010neurips-spectral/)

BibTeX

@inproceedings{vito2010neurips-spectral,
  title     = {{Spectral Regularization for Support Estimation}},
  author    = {Vito, Ernesto D. and Rosasco, Lorenzo and Toigo, Alessandro},
  booktitle = {Neural Information Processing Systems},
  year      = {2010},
  pages     = {487-495},
  url       = {https://mlanthology.org/neurips/2010/vito2010neurips-spectral/}
}