Advice Refinement in Knowledge-Based SVMs

Abstract

Knowledge-based support vector machines (KBSVMs) incorporate advice from domain experts, which can improve generalization significantly. A major limitation that has not been fully addressed occurs when the expert advice is imperfect, which can lead to poorer models. We propose a model that extends KBSVMs and is able to not only learn from data and advice, but also simultaneously improve the advice. The proposed approach is particularly effective for knowledge discovery in domains with few labeled examples. The proposed model contains bilinear constraints, and is solved using two iterative approaches: successive linear programming and a constrained concave-convex approach. Experimental results demonstrate that these algorithms yield useful refinements to expert advice, as well as improve the performance of the learning algorithm overall.

Cite

Text

Kunapuli et al. "Advice Refinement in Knowledge-Based SVMs." Neural Information Processing Systems, 2011.

Markdown

[Kunapuli et al. "Advice Refinement in Knowledge-Based SVMs." Neural Information Processing Systems, 2011.](https://mlanthology.org/neurips/2011/kunapuli2011neurips-advice/)

BibTeX

@inproceedings{kunapuli2011neurips-advice,
  title     = {{Advice Refinement in Knowledge-Based SVMs}},
  author    = {Kunapuli, Gautam and Maclin, Richard and Shavlik, Jude W.},
  booktitle = {Neural Information Processing Systems},
  year      = {2011},
  pages     = {1728-1736},
  url       = {https://mlanthology.org/neurips/2011/kunapuli2011neurips-advice/}
}