Graphical Gaussian Vector for Image Categorization

Abstract

This paper proposes a novel image representation called a Graphical Gaussian Vector, which is a counterpart of the codebook and local feature matching approaches. In our method, we model the distribution of local features as a Gaussian Markov Random Field (GMRF) which can efficiently represent the spatial relationship among local features. We consider the parameter of GMRF as a feature vector of the image. Using concepts of information geometry, proper parameters and a metric from the GMRF can be obtained. Finally we define a new image feature by embedding the metric into the parameters, which can be directly applied to scalable linear classifiers. Our method obtains superior performance over the state-of-the-art methods in the standard object recognition datasets and comparable performance in the scene dataset. As the proposed method simply calculates the local auto-correlations of local features, it is able to achieve both high classification accuracy and high efficiency.

Cite

Text

Harada and Kuniyoshi. "Graphical Gaussian Vector for Image Categorization." Neural Information Processing Systems, 2012.

Markdown

[Harada and Kuniyoshi. "Graphical Gaussian Vector for Image Categorization." Neural Information Processing Systems, 2012.](https://mlanthology.org/neurips/2012/harada2012neurips-graphical/)

BibTeX

@inproceedings{harada2012neurips-graphical,
  title     = {{Graphical Gaussian Vector for Image Categorization}},
  author    = {Harada, Tatsuya and Kuniyoshi, Yasuo},
  booktitle = {Neural Information Processing Systems},
  year      = {2012},
  pages     = {1547-1555},
  url       = {https://mlanthology.org/neurips/2012/harada2012neurips-graphical/}
}